MARITIME **GEOTHERMAL** LTD.

Installation and Service Manual

EMW-Series Energy Module Hydronic Geothermal Heat Pump

> Two-stage R410a 60Hz Model Sizes 45-80

Maritime Geothermal Ltd. P.O. Box 2555, 170 Plantation Road Petitcodiac, NB E4Z 6H4 (506) 756-8135

info@nordicghp.com www.nordicghp.com 002361MAN-01

- WARNING: Ensure all access panels are in place and properly secured before applying power to the unit. Failure to do so may cause electrical shock.
- **WARNING:** Before performing service or maintenance on the system, ensure all power sources are DISCONNECTED. Electrical shock can cause serious personal injury or death.
- WARNING: Refrigeration systems contain refrigerant under high pressure and as such can be hazardous to work on. Only qualified service personnel should install, repair, or service the heat pump.
- **CAUTION:** Safety glasses and work gloves should be worn at all times whenever the system is serviced. A fire extinguisher and proper ventilation should be present whenever brazing is performed.
- **CAUTION:** Venting refrigerant to atmosphere is illegal. A proper refrigerant recovery system must be employed whenever repairs require removal of refrigerant from the equipment.

Model Nomenclature

	APPLICATION TABLE									
MODEL	FUNCTION	REFRIGERANT	VOLTAGE COMPRESSOR OUTDOOR LOOP COIL INDOOR LOOP COIL ELECTRIC BACKUP REVISIONS					REVISIONS		
EMW-45	HACW	Ρ	1 2 6 7	т	C Y Z	С	12K	07		
EMW-55	HACW	Ρ	1 2 6 7	т	C Y Z	С	12K	07		
EMW-65	HACW	Ρ	1 2 6 7	т	C Y Z	С	12K	07		
EMW-75	HACW	Ρ	1 2 6 7	T T S T	C Y Z	С	12K	07		
EMW-80	HACW	Ρ	1 2 7	S	C Y Z	С	12K	07		
	•	This manua	l applies only	to the models and	revisions listed	in this table.				

Maritime Geothermal Ltd. has a continuous improvement policy and reserves the right to modify specification data at any time without prior notice .

Table of Contents

Tables, Figures, & Documents
EMW System Description6General Overview61. Heating Mode62. Cooling Mode6Auxiliary Heat6
EMW Sizing 7 Heat Pump Sizing 7 Auxiliary Heat Sizing 7
Installation Basics8Unpacking the unit8Unit Placement8Sample Bill of Materials - Ground Loop Installations8Sample Bill of Materials - Open Loop Installations8
Wiring9Power Supply Connections9Control Transformer9Indoor & Zone Circulator Pump Wiring9Thermostat Connections9Circulator Pump Module Wiring (Ground Loop Only)9Open/Closed Loop Wiring10Domestic Hot Water (Desuperheater)10Other Connections10000531CDG - Typ. Heating Only Zone Wiring (EMW)11000583CDG - Typ. Heating & Cooling Zone Wiring (EMW)12
Piping13Loop Terminology13Zone Loop13Indoor Loop13Purging the Zone & Indoor Loops13Outdoor Loop14Pressure Relief Connection14Pomestic Hot Water (Desuperheater)14002363PDG - Typical Piping Connections - EMW15000530PDG - Typical Zone Types16000970PDG - Connection to DHW Pre-Heat Tank17
Ground Loop Installations18Circulator Pump Module18Flushing & Purging18Adding Antifreeze Solution19Initial Pressurization19Pipe Insulation190006081NF - Typical Horiz. Ground Loop Configuration200006091NF - Typical Vert. Ground Loop Configuration21000906CDG - Circulator Pump Module Installation22001823CDG - Dual Flow Pump Module Installation23
Open Loop Installations24Well Water Temperature24Well Water Flow24Well Water Quality24Water Discharge Methods24Water Valve25Water Flow Control25Submersible Pump Selection26Stage 1 vs. 2 on Open Loop26Plumbing the Heat Pump26Pipe Insulation27000907CDG - Typical Open Loop Installation27001822CDG - Dual Flow Open Loop Installation28000619INF - Ground Water Disposal Methods29

Operation BACnet Control	30 30 30
Outdoor Reset	31
Auxiliary Heat (Stage 3)	31
Status Indicator Lights	31
PC Application (PC App)	32
	зz
LCD Display & Menus	44
BACnet Interface	46
Startup Procedure	50
Pre-start Inspection	50
Unit Startup	51
Startup Record	52
General Maintenance	53
Troubleshooting Guide	54
Troubleshooting Tools	63
Repair Procedures	64
Model Specific Information Shipping Information Refrigerant Charge Outdoor Loop Flow Rates Operating Temperature Limits Pressure Drop Data Standard Capacity Ratings Performance Tables Electrical Specifications Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Electrical Box Layout (208-3-60) EMW-Series Refrigeration Circuit - Heating Mode EMW-Series Refrigeration Circuit - Cooling Mode	65 65 65 66 66 67 77 77 77 78 79 80 81
Appendix A: Control Board Description	01
Appendix A. Control Board Description	02
Appendix B: USB Driver Installation	86
Appendix C: PC App Installation	87
Appendix D: Updating Firmware Updating Firmware via PC App Updating Firmware via Jumper Pins	88 88 90
Warranty	91

Tables, Figures, & Documents

Tables	Table 1 - Heat Pump Size vs. Heated Area for a Ground Loop System	7
lanes	Table 2 - Heat Pump Size vs. Heated Area for an Open Loop System	7
	Table 3 - Power Supply Connections	9
	Table 4 - Control Connections	9
	Table 5 - Antifreeze Percentages	19
	Table 6 - Volume of Fluid per 100 ft. of Pipe	19
	Table 7 - Required Flow	24
	Table 8 - Typical Temperature Settings	30
	Table 9 - Indicator Lights	
	Table 10 - BACnet Objects - Control Signals (Read/Write)	
	Table 11 - BACnet Objects - Operation Mode Description (Read Only)	
	Table 12 - BACnet Objects - Data (Read Only)	
	Table 13 - BAChet Objects - Alarm Descriptions (Read Only)	
	Table 14 - BAChet Objects - Fault Descriptions (Read Only)	
	Table 15 - Shipping information	
	Table 17 - Neiligeralli Charge	
	Table 17 - Outdool Loop Flow Rates	
	Table 10 - Operating reiniperature Limits	
	Table 19 - Outdoor Loop Fressule Drops	00 88
	Table 20 - Standard Capacity Ratings - Ground Water Heating 6012	68
	Table 21 - Standard Capacity Ratings - Ground Loon Cooling 60Hz	68
	Table 23 - Standard Capacity Ratings - Ground Water Cooling 60Hz	68
	Table 24 - EMW-Series Electrical Specifications	
	Table A1 - Control Board Connector Descriptions (Top)	
	Table A2 - Control Board Connector Descriptions (Left Side)	
	Table A3 - Control Board Connector Descriptions (Bottom)	
	Table A4 - Control Board Connector Descriptions (Right Side)	
F :	Figure 1 - R&C NRE 26 Dump Curve	10
Figures	Figure 1 - Dag INT-30 Fullip Guive	13
	Figure 2 - Glouin Loop Accessories & Tools	
	Dimensions	20
Documents	000531CDG - Typical Heating Only Zone Connections (EMW-Series)	
Doodmonto	000583CDG - Typical Heating & Cooling Zone Connections (EMW-Series)	
	002363PDG - Typical Piping Connections - EMW	
	000530PDG - Typical Zone Types for Hydronic Applications	
	000970PDG - Single Unit Connection to DHW Pre-Heat Tank (Brass FPT)	17
	000608INF - Typical Horizontal Ground Loop Configuration	
	000609INF - Typical Vertical Ground Loop Configuration	21
	000906CDG - Geo-Flo Circulator Pump Module Installation	
	001823CDG - Dual Flow Circulator Pump Module Installation for 2-Stage Heat Pumps	23
	000907CDG - Typical Ground Water (Open Loop) Installation	
	001822CDG - Dual Flow Groundwater (Open Loop) Installation for 2-Stage Heat Pumps	
	000619INF - Ground Water Disposal Methods	
	002039SCH - EMW-Series Schematic Diagram 208/230-1-60	75
	002040ELB - EMW-Series Electrical Box Diagram 208/230-1-60	
	002364SCH - EMW-Series Schematic Diagram 208-3-60	<u>77</u>
	002365ELB - EMW-Series Electrical Box Diagram 208-3-60	
	00104/RCD - EMW-Series Retrigeration Circuit - Heating Mode	
	UU1U48RCD - EMW-Series Refrigeration Circuit - Cooling Mode	80

General Overview

The Nordic EMW-series, a unique product with a more than 20-year history of reliable operation, is a water source heat pump that can heat or cool water for hydronic heating and cooling systems.

Unlike a regular water to water heat pump, it comes with most required hydronic accessories built into the cabinet:

- 50 gallon (189L) buffer tank
- 12 kW of electric elements for auxiliary/backup heat, with zero-pressure safety switch
- indoor & zone circulators with isolation valves
- expansion tank, pre-charged with air
- hydronic pressure gauges
- 125 psi pressure relief valve with external drain connection
- all ball valves and drains required for air purging
- electronic control board with full hydronic temperature control, laptop connectivity via USB with free PC App, LCD display, electronic readout of all pressures and temperatures, data logging & graphing, and BACnet interface

Being a water source, 'geoexchange', or 'geothermal' heat pump, it does require either a closed ground loop or open loop water well for a heat source/sink.

In additional to the main hydronic water heating function, there is a double-wall desuperheater for pre-heating domestic hot water with \sim 5% of the heat pump's capacity. This function is only active when the heat pump is running for space heating or cooling purposes.

The coaxial hydronic heat exchangers are copper / steel with optional CuNi inner tube available for the outdoor coil. Most model sizes have modulation capability through the use of 2-stage compressors, for closer load matching and to reduce cycling. An Electronic Expansion Valve (EEV) is standard, for more precise superheat and system optimization than is possible with a TXV. The cabinet is powder coated galvanized sheet metal. There are two operational modes: hydronic heating and hydronic cooling.

1. Heating Mode

In heating mode, the heat pump heats water in its built-in buffer tank to a user-adjustable setpoint temperature, while extracting heat from the outdoor loop. If a closed ground loop is used, the pumps are powered and controlled by the heat pump; if open loop, a water valve is opened by the heat pump during heating operation.

Building zones may be in-floor heating, hydronic air handlers, or other hydronic devices suitable for water temperatures less than 120°F (49°C). When a zone requires heat, it calls for the zone circulator pump inside the EMW to activate, and opens a zone valve located outside the EMW. There is no control connection between the zone thermostat and the heat pump, other than the call to activate the zone pump.

2. Cooling Mode

In cooling mode the heat pump chills water in its built-in buffer tank to a user-defined setpoint temperature, while rejecting heat to the outdoor loop.

In-floor zones are generally disabled for cooling mode, although in-floor cooling is possible with the addition of special dew point controllers.

Auxiliary Heat

The EMW comes with 12 kW of electric heating elements installed in the built-in buffer tank. These elements are part of the heat pump, controlled as the third stage of heating, and do not require a separate electric service (unlike elements in tanks purchased separately from the heat pump).

The electric elements will provide auxiliary heat in the event the heat pump is sized to provide less than 100% of the heat load on the coldest day of the year, and also backup heat should a problem occur that causes the heat pump to be locked out on a safety control.

Heat Pump Sizing

TABLE 1 shows a rough guideline as to the size of home each heat pump size can handle for **ground loop (closed loop)** installations.

TABLE 1 - Heat Pump Size vs. Heated Areafor a Ground Loop System					
Model	ft²	m²			
45	1400	130			
55	2000	185			
65	2600	240			
75	3100	290			
80	3500	325			

TABLE 2 shows a rough guideline as to the size of home each heat pump size can handle for **ground water (open loop)** installations.

TABLE 2 - Heat Pump Size vs. Heated Area for an Open Loop System					
Model	ft ²	m²			
45	1800	165			
55	2500	230			
65	3200	295			
75	3800	355			
80	4200	390			

THE TABLES ABOVE ARE FOR INFORMATION ONLY. THEY SHOULD NOT BE USED TO SELECT A UNIT SIZE. They simply show on average what size unit is required for a typical two-level home (main level and below grade basement) with R20 walls, R40 ceiling and average size and number of windows. The Heated Area is the area of the main level. The tables account for a basement the same size as the heated area.

MARITME GEOTHERMAL LTD. HIGHLY RECOM-MENDS THAT A PROPER HEAT LOSS/GAIN ANALYSIS BE PERFORMED BY A PROFESSIONAL INSTALLER WITH AP-PROVED CSA F-280 SOFTWARE BEFORE SELECTING THE SIZE OF UNIT REQUIRED FOR THE APPLICATION. For heating dominant climates, we recommend sizing the unit to 100% of the heating design load for maximum long term efficiency with minimal supplementary heat. The unit should be installed as per CSA standard 448.2-02. For ground loop applications, the ground loop should be designed using suitable software with a multi-year analysis.

The analysis will result in a heat load for the coldest day, which is influenced by, for example, the number of levels, the size of the windows, the orientation of the home, attached garage, bonus rooms, walk-in basement, and coldest outdoor temperature for the region.

A heat pump model size can be selected by comparing the calculated heat load to the **Standard Capacity Ratings**, which are listed in the Model Specific Information section of this manual. For 100% heat pump sizing, choose a heat pump with a standard capacity rating that matches or just slightly exceeds the calculated heat load.

Closed ground loops are normally designed to reach a minimum temperature of just below freezing at the end of the heating season, in order to take advantage of the latent heat of groundwater (at least in northern climates). Hence, the Standard Capacity Ratings for Ground Loop Heating should apply in all northern climates.

The Standard Capacity Ratings for Ground Water (open loop) heat pumps assume a well water temperature of 50F (10C). If the groundwater is not close to this temperature, it will be necessary to consult the more detailed performance tables later in the section for heat pump output at a different ELT.

In cooling dominant climates, the heat pump should be similarly sized using the Ground Loop Cooling or Ground Water Cooling Standard Capacity Ratings.

Auxiliary Hydronic Heat Sizing

The EMW comes with 12kW of electric heating elements installed in the built-in buffer tank. This should be sufficient for auxiliary heat for all model sizes, since geothermal heat pump installations should be designed by code to cover 75-100% of the heat load using the compressor.

Also, in case of a heat pump problem, the elements will cover most or all of the heat load until the heat pump is serviced.

If larger elements are required for a particular installation, a standard NORDIC W-series heat pump with separate buffer tank and elements should be used instead of the EMW series.

Unpacking the Unit

When the heat pump reaches its destination it should be unpacked to determine if any damage has occurred during shipment. Any visible damage should be noted on the carrier's freight bill and a claim filed.

Unit Placement

The placement of a hydronic heat pump has negligible effects on the operation of the system. For ground water systems, the unit can be placed near the well water system. Ground loop system units can be placed near where the ground loop pipes enter the structure to keep the ground loop piping, heat pump, and circulator pump module in one location. The hydronic layout may make a particular location ideal for the unit installation. Looking at the front (narrow end) of the heat pump where the pipes come out, the right side access panels should remain clear of obstruction for a distance of at least **three feet** to facilitate air purging and servicing. The left side should be left at least **12**" away from any wall in case the small expansion tank ever needs to be replaced. No access is required for the narrow back side.

Raising the heat pump off the floor a few inches is generally a good practice since this will prevent rusting of the bottom panel of the unit. It is recommended that the heat pump be placed on a piece of 2" blue or pink styrofoam. This process will also deaden the compressor noise emitted from the bottom of the cabinet.

Sample Bill of Materials -Ground Loop Installations

Although not exhaustive, following is a list of materials needed for a typical ground loop installation:

FROM MARITIME GEOTHERMAL

- EMW SERIES HEAT PUMP
- P/T PORTS AND HOSE ADAPTERS (2)
- 1 OR 2 PUMP PACK
- PIPE ADAPTERS FOR PUMP PACK

OPTIONAL FROM MARITIME GEOTHERMAL

- COMPRESSOR SOUND JACKET
- SECURE START
- AHW-65 HYDRONIC AIR HANDLER(S)

<u>DHW</u>

- PREHEAT TANK, 40 OR 60 GAL
- 1/2" COPPER PIPE
- 1/2" FITTINGS, BALL VALVES, BOILER DRAINS, CV

GROUND LOOP

- ¾" PE PIPE
- 1-1/4" PE PIPE
- PE PIPE FITTINGS
- 1" CLEAR HOSE (HEAT PUMP TO PUMP PACK)
- HOSE CLAMPS
- ANTIFREEZE: METHANOL OR PROP. GLYCOL

<u>ZONES</u>

- ZONES VALVES
- IN-FLOOR PIPING
- 3RD PARTY AIR HANDLERS W/ DUCTING
- ZONE THERMOSTATS
- RELAYS OR ZONE CONTR. (REVERSING SYSTEMS)
- ZONE SUPPLY & RETURN HEADERS
- PIPE & FITTINGS TO ZONES

ELECTRICAL

- SERVICE WIRE: #1-3 OR #3-3
- BREAKER: 100A OR 125A
- THERMOSTAT WIRE 18-4
- THERMOSTAT WIRE 18-2
 FORK TERMINALS FOR TSTAT WIRE
- 2" STYROFOAM INSUL. FOR UNDER UNIT

Sample Bill of Materials -Open Loop Installations

Although not exhaustive, following is a list of materials needed for a typical open loop (groundwater) installation:

FROM MARITIME GEOTHERMAL

- EMW SERIES HEAT PUMP
- P/T PORTS AND HOSE ADAPTERS (2)
- DOLE VALVE
- TACO OR SOLENOID VALVE

OPTIONAL FROM MARITIME GEOTHERMAL

- COMPRESSOR SOUND JACKET
- SECURE START
- AHW-65 AIR HANDLER(S)

<u>DHW</u>

- PREHEAT TANK, 40 OR 60 GAL
- ½" COPPER PIPE
- 1/2" FITTINGS, BALL VALVES, BOILER DRAINS, CV

WATER SYSTEM

- 1" BLACK PLASTIC WATER PIPE
- 1" BARBED FITTINGS & HOSE CLAMPS
- SUBMERSIBLE PUMP (IF NOT EXISTING)
- PRESSURE TANK (IF NOT EXISTING)
- CYCLE STOP VALVE (OPTIONAL)

<u>ZONES</u>

- ZONES VALVES
- IN-FLOOR PIPING
- 3RD PARTY AIR HANDLERS W/ DUCTING
- ZONE THERMOSTATS
- RELAYS OR ZONE CONTR. (REVERSING SYSTEMS)
- ZONE SUPPLY & RETURN HEADERS
- PIPE & FITTINGS TO ZONES

ELECTRICAL

- SERVICE WIRE: #1-3 OR #3-3
- BREAKER: 100A OR 125A
- THERMOSTAT WIRE 18-4
 THERMOSTAT WIRE 18-2
- FORK TERMINALS FOR TSTAT WIRE
- 2" STYROFOAM INSUL. FOR UNDER UNIT

Power Supply Connections

There is only one power supply connection to the heat pump, which supplies both the compressor section and the backup tank elements.

The unit has a concentric 1.093" / 0.875" knockout for main power supply connection. There are also two 7/8" knockouts and a 1/2" opening with plastic grommet (grommet hole is 3/8") for control and outdoor loop circulator connections.

A schematic diagram (SCH) and electrical box layout diagram (ELB) can be found on the electrical box cover of the unit as well as in the **Model Specific Information** section of this manual.

The Electrical Tables in the **Model Specific Information** section contain information about the wire and breaker size.

IMPORTANT NOTE: A properly qualified electrician should be retained for all connections to the heat pump and associated controls. The connections to the unit MUST CONFORM TO LOCAL CODES.

TABLE 3 - Power Supply Connections				
Line	Description	Voltages		
L1	Line 1	All		
L2	Line 2	All		
L3	Line 3	3-phase only		
N	Neutral	All except 220-1-50		
GND	Ground	All (connect to ground lug)		

Control Transformer

The low voltage controls, including the control board, are powered by a 100VA class II transformer. 208/230-1-60 models have a resettable breaker on the secondary side for circuit protection. Should the breaker trip, locate and correct the problem and then reset the breaker by pressing in on it.

All other voltage models have primary and secondary fuses for circuit protection.

IMPORTANT NOTE: For 208/230VAC-1-60 units, if connecting to 208VAC power supply move the red wire connected to the 240 terminal of the transformer to the 208 terminal of the transformer.

Indoor & Zone Circulator Pump Wiring

The EMW series has built-in indoor loop (heat pump to buffer tank) and zone loop (buffer tank to zones) circulator pumps, so no wiring is necessary.

The indoor loop circulator is controlled automatically by the heat pump's control board.

The zone circulator is turned on by making a dry contact between \mathbf{R} and \mathbf{Z} on the heat pump's terminal strip. See wiring diagrams later in this section, and in the Model Specific Information section.

Thermostat Connections

There are no thermostats or aquastats to directly connected to the EMW-series heat pump itself. The heat pump will run to maintain the buffer tank water temperature to the setpoints selected by the user through the LCD display or PC App software, using the **Setpoint Control** routine described later in this manual.

Zone thermostats are required, to request heated or chilled water for a particular zone. These may be interconnected using a 3rd party zone controller, or through external relays as illustrated in the following wiring diagrams. Systems that will provide both heating and cooling require extra relays to provide an isolated cooling signal to the heat pump and to disable radiant infloor heating zones while in cooling mode. The diagrams on the following pages show a typical wiring diagram for a heating only setup, and also a heating / cooling system. These drawings represent a basic system, in which heating is the default mode and cooling has priority. In place of relays, a third party zone controller may be used, for more flexible and detailed zone control.

Note that for heating / cooling installations, a dry contact will be needed between the ${f R}$ and ${f O}$ terminals to put the heat pump in cooling mode.

IMPORTANT NOTE: For cooling mode activation, it is important to use a setup that provides a dry contact between R and O *all cooling season* to prevent repeated heating and re-cooling of the buffer tank on every operational cycle.

TABLE 4 - Control Connections					
Terminal	Description				
С	C 24VAC common (ground)				
R	24VAC hot				
Z	Zone circulator activation				
O Cooling mode activation					

Circulator Pump Module Wiring (Ground Loop Only)

The heat pump has provisions for connecting the ground loop circulator pump module so that the pumps will be turned on whenever the compressor operates. Connect the circulator pump module to the appropriate two terminals (115V or 230V) of the terminal strip marked **OUTDOOR CIRCULATORS** in the heat pump, as per the voltage of the circulator pump module. Ensure that the total current draw of all circulators connected to the terminal strip does not exceed the value indicated on the label in the heat pump electrical box. Refer to the electrical box drawing on the electrical box cover for more information.

Open/Closed Loop Wiring

The heat pump is provided configured for closed loop operation. For open loop operation, it is *necessary* to remove the jumper plug from the wiring harness found behind the pipe post and plug in the water valve harness. This will select the proper low pressure control. See the "Water Valve" section in the Open Loop Installations chapter and 000907CDG for details.

WARNING: Connecting an open loop water valve without a harness provided by Maritime Geothermal could lead to frozen and ruptured heat exchanger, voiding the warranty.

Domestic Hot Water (Desuperheater)

The desuperheater function for domestic hot water heating is pre-wired and no field connections are necessary.

After the desuperheater is filled with water and purged of air, activate the built-in DHW circulator by connecting the brown wire with the blue insulated terminal to L1 of the compressor contactor as shown on the wiring diagram in the **Model Specific Information** section. **Ensure the power is off when connecting the wire.** Also, turn on the DHW ON/OFF switch.

Other Connections

In most installations, accessories that are not already described will not be required. Other available accessories or external connections include:

- Compressor current sensor.
- BACnet, for external control of heating/cooling demand by the building control system.

See the wiring (SCH) diagrams in the **Model Specific Infor**mation section or on the electrical box cover for these connections.

Piping

NOTE: Care should be taken when routing all water lines to ensure that adequate access to the heat pump is maintained so as to not compromise ease of serviceability. All loop connections are located together on the front of the unit. Unions are recommended on all connections to allow easy access to heat exchangers for service if required.

Loop Terminology

- **Zone loop**: supplies heated or chilled water to the building. The built-in zone circulator provides flow for this loop.
- **Indoor loop**: the internal loop between the heat pump's indoor heat exchanger and built-in buffer tank. No field connection.
- **Outdoor loop**: the heat source or sink, either a closed ground loop or open loop (water well).
- DHW (domestic hot water) loop: the desuperheater, which heats potable water in a preheat tank while the compressor is running for space heating or cooling purposes.

Zone Loop

The connections for the zone loop circuit are 1" brass female NPT. They are labelled as ZONE IN and ZONE OUT.

The zone loop connections will be plumbed directly to the zone supply and return headers, as illustrated in the diagram on the following page. Zone valves should be located on the return header. All hydronic accessories as well as zone loop air bleed taps and valves are located inside the heat pump cabinet.

The zone circulator has 3 speed settings and will provide flow according to the following curve:

Indoor Loop

The indoor loop is internal to the heat pump and no field connections are required (or possible).

Purging the Zone & Indoor Loops

There are ball valves and drains inside the unit to facilitate filling and purging. Once the system has been filled with the desired fluid, air purging may be done in the following manner:

- 1. Connect a fill hose to the Zone Drain.
- 2. Connect a drain hose to the Indoor Drain.
- 3. With a T-handle hex key, close the right isolation valve of the Zone Circulator.
- 4. Close the right isolation valve of the Indoor Circulator.
- 5. Open the Zone and Indoor Drains.
- 6. Turn on the fill hose.
- 7. Purge until no air can be heard leaving the drain hose.
- 8. Close the Indoor Valve and open the right isolation valve of the Indoor Circulator.
- 9. Purge until no air can be heard leaving the drain hose.
- 10. Close the Zone Valve and open the right isolation valve of the Zone Circulator.
- 11. Purge until no air can be heard leaving the drain hose.
- 12. Close the Indoor Valve and open the right isolation valve of the Indoor Circulator.
- 13. Purge until no air can be heard leaving the drain hose.
- 14. Open the right isolation valve of the Indoor Circulator.
- 15. Open the Zone Valve.
- 16. Close the Indoor Drain and then close the Zone Drain when the desired system pressure is obtained.

Repeat the above procedure as necessary to ensure that all of the air has been removed, then remove the purging equipment.

Outdoor Loop

The connections for the Outdoor Loop circuit are 1" brass female NPT. They are labelled as OUTDOOR IN and OUTDOOR OUT.

See the following chapters for details on ground loop and open loop installations.

Pressure Relief Connection

There is an external connection for the internal pressure relief valve, which is 1/2" female NPT. This may optionally be connected to a floor drain.

Domestic Hot Water (Desuperheater)

The connections for the DHW circuit are 1/2" brass female NPT fittings. They are marked as DHW IN and DHW OUT.

A typical piping diagram for a pre-heat tank configuration can be found in **drawing 000970PDG** at the end of this section. Be sure to note the position of the check valve and the direction of water flow. Other configurations are possible, and there may be multiple units tied together in larger buildings.

WARNING: USE ONLY COPPER LINES TO CONNECT THE DESUPERHEATER. TEM-PERATURES COULD REACH 200F SHOULD THE DHW CUTOUT SWITCH FAIL, POTEN-TIALLY MELTING & RUPTURING PLASTIC PIPING.

Ensure the tank is filled with water and under pressure before activating the built-in DHW circulator as described below. First, slightly loosen the boiler drain on the DHW Out pipe to allow air to escape from the system. This step will make certain that the domestic hot water circulator in the unit is flooded with water when it is started.

CAUTION: the domestic hot water pump is water lubricated; damage will occur to the pump if it is run dry for even a short period of time.

Activate the built-in DHW circulator by connecting the brown wire with the blue insulated terminal to L1 of the compressor contactor. **Ensure the power is off when connecting the wire.** Once connected the DHW switch on the front of the unit may be used to enable/disable the domestic hot water circulator.

The DHW loop may have to be purged of air several times before good circulation is obtained. A temperature difference between the DHW In and DHW Out can be felt by hand when the circulator pump is operating properly.

For the pre-heat tank setup, the final tank should be set to 140°F (60°C), which is required by most codes. The preheat tank does not require electric elements. This setup takes full advantage of the desuperheater as it is the sole heat provider to the pre-heat tank. The desuperheater remains active during the compressor runtime until the pre-heat tank has been completely heated by the desuperheater alone. This setup is more energy efficient than a single tank setup, and eliminates the possibility of reverse heating of the refrigerant gas in cooling

CAUTION: If two (2) shut-off valves are located on the domestic hot water ines as shown in the diagram, a pressure relief valve must be installed to prevent possible damage to the domestic hot water circulator pump should both valves be closed.

See other diagrams and instructions in the manual for design, selection, and installation details of ground loop and hydronic heating accessories.

There are multiple valid connection methods or details which differ from those shown, including:

- Open loop installation, which uses a well water system in place of a ground loop.

- Piping routed differently from that shown, or different piping & component types.

Components included inside EMW heat pump:

- hydronic buffer tank with 12 kW auxiliary electric heat
- circulator: heat pump to buffer tank
- circulator: buffer tank to zones
- circulator: domestic hot water (desuperheater)
- hydronic expansion tank
- all air bleed taps and valves
- hydronic pressure gauges
- hydronic pressure relief valve
- element safety pressure switch (in case flammable antifreeze used)

				Drawn By Dan Rheault	Date 1-Dec-2018	MARITI	ME GENTHERMAL ITD	P.O. Box 2555 170 Plantation Rd.
				Checked By	1-Dec-2018	W/AIIIII		Petitcodiac, NB CANADA E4Z 6H4
				Barranouale	1 000 2010	Drawing	i Name	
				Eng. Approved By	Date		Turis al Diala a O	
							Typical Piping Co	onnections -
				Mfg. Approved By	Date		EMW	
In West Dat		Dev Die eut	4 D == 0040	1				
Initial Rel.	Dan Rheault	Dan Rheault	1-Dec-2018	Approved By	Date	Size	Drawing Number	Revision Sheet
ECO#	IMPL BY	APVD BY	DATE	Approved by	Jutt	LET	002363PDG	01 1/2
	Initial Rel. ECO#	Initial Rel. Dan Rheault ECO# IMPL BY	Initial Rel. Dan Rheault Dan Rheault ECO# IMPL BY APVD BY	Initial Rel. Dan Rheault Dan Rheault 1-Dec-2018 ECO# IMPL BY APVD BY DATE	Drawn By Dan Rheault Checked By Dan Rheault Checked By Dan Rheault Initial Rel. Dan Rheault Dan Rheault Independent Initial Rel. Dan Rheault IMPL BY APVD BY	Drawn By Dan Rheault Date 1-Dec-2018 Checked By Dan Rheault 1-Dec-2018 Checked By Dan Rheault 1-Dec-2018 Initial Rel. Dan Rheault 1-Dec-2018 Initial Rel. Dan Rheault 1-Dec-2018 ECO# IMPL BY APVD BY DATE	Drawn By Dan Rheault Date 1-Dec-2018 Image: Date data Date Image: Date data Date Image: Data Date Initial Rel. Dan Rheault Date Image: Data Date Initial Rel. Dan Rheault Date Image: Data Date Mfg. Approved By Image: Data Date Initial Rel. Dan Rheault Date Image: Data Date Mfg. Approved By Image: Data Date Image: Data Date	Drawn By Dan Rheault Date 1-Dec-2018 MARITIME GEOTHERMAL ID. Checked By Dan Rheault Date Date Initial Rel. Dan Rheault 1-Dec-2018 Immoder Mfg. Approved By Date Initial Rel. Dan Rheault 1-Dec-2018 Immoder Approved By Date

- 5. Ensure the floor circulator is adequately sized to accomodate the type and number of zones connected to the system.
- 6. The pool aquastat will operate the Pool/Spa Zone Valve.

					Drawn By Chris Geddes Checked By	Date 06 SEP 07 Date	M	ARITIME GEOTHERMAL LTD.	170 F Petito E4Z	Plantation Rd. odiac, NB 6H4
					Approved By (ENG) Chris Geddes	Date 06 SEP 07 Date	Drawing Ty	g Name pical Zone Types for Hydronic A	Applica	ntions
01	Initial Release	C. GEDDES	C. GEDDES	06 SEP 07	Approved By	Data	Size	Drawing Number	REV	SHEET
REV	ECO #	IMPL BY	APVD BY	DATE	Арргоved Бу	Date	A	000530PDG	01	1 of 1

Ground Loop Installations

Refer to diagrams **000608INF** & **000609INF** at the end of this section for typical ground loop configurations. They are for reference only, and should not be used to replace formal training and computerized loop design.

Once the ground loop has been pressure tested and the header pipes have been connected to the circulator pump module, the heat pump can be connected to the circulator pump module. The port connections for the Outdoor Loop are 1" brass FPT fittings. They are marked as OUTDOOR IN and OUTDOOR OUT.

Circulator Pump Module

Maritime Geothermal Ltd. offers compact pump modules with built in three way valves to facilitate filling and purging the ground loop. Refer to drawing **000906CDG** at the end of this section. Alternatively, Grundfoss Model UPS 26-99 or Taco Model 0011 pumps or other brands with similar pumping capability may be used. The single pump module will typically handle systems up to 3 tons (model sizes 25, 35, and 45); the two pump module will typically handle 4 to 6 ton systems (model sizes 55, 65, 75, 80). This is based on a typical parallel system with one circuit per ton.

Maritime Geothermal recommends calculating the total pressure drop of the ground loop (including headers, indoor piping and heat pump exchanger drop) based on the antifreeze type and concentration at the desired minimum loop temperature. A pump module that can deliver the flow required for the unit at the calculated total pressure drop should be selected. Refer to the Model Specific Information section for unit flow requirements.

Loop pressure drops can be calculated using software such as those mentioned in the Horizontal Ground loops section, or can be calculated in a spreadsheet using the pipe manufacturer's pressure drop tables for pipe diameter and fittings.

The circulator pump module must be connected to the heat pump Outdoor Loop ports with a lineset suitable for the flow required with minimum pressure drop. 1" rubber or plastic lines should be used.

The installation of P/T plugs/ports (pressure / temperature, pronounced "*Pete's plugs*") is recommended on both the entering and leaving lines at the heat pump. This will allow the installer or homeowner to check water flow through the loop by measuring the pressure difference through the heat exchanger and comparing it to that listed in the **Model Specific Information section**. P/T ports, adapters, and gauge adapters and are available as accessories from Maritime Geothermal Ltd..

Flushing & Purging

Once the groundloop has been installed and all connections are completed between the heat pump, circulator pump module and ground loop, the entire ground loop system should be **pressure tested with air to 100 PSIG** to make sure there are no leaks on any of the inside fittings. Soap all joints and observe that the pressure remains constant for 1 hour.

When satisfied that all connections are leak free, release the air pressure and connect a purge cart (see Figure 1) to the flushing access ports at the pump module (refer to drawing 000906CDG). A temporary flushing system can alternately be constructed using a 45 gal. barrel and a pump with sufficient volume and head capability to circulate fluid at a velocity of at least 2 ft./min. through all parts of the loop. Adjust the circulator pump module valves to connect the purge cart to the ground loop. Begin pumping water through the ground loop, ensuring that the intake of the pump stays submerged at all times by continuously adding water. Water flowing back from the return line should be directed below the water level in the barrel or flush tank to prevent air being mixed with the outgoing water.

Once the lines have been filled and no more air bubbles are appearing in the line, adjust the circulator pump module valves to circulate water through the heat pump using the same technique as described above. When all air is removed reverse the flow of water through the lines by interchanging the flush cart lines and purge again. You will be able to visibly tell when all air is removed.

Adding Antifreeze Solution

In most mid and northern areas of the US and in all of Canada it is necessary to condition the loop fluid by the addition of some type of antifreeze solution so that it will not freeze during operation in the winter months. This antifreeze is required because the loop fluid will normally reach a low entering temperature of 28°F to 32°F (-2°C to 0°C) and refrigerant temperatures inside the heat pump's heat exchanger may be as low as 20°F (11°C) cooler. See TABLE 8 for details of freeze protection provided by different concentrations.

TABLE 5 - Antifreeze Percentages								
BY VOLUME								
Protection to: 10°F 15°F 20°F 25°F								
Methanol	25%	21%	16%	10%				
Propylene Glycol	38%	30%	22%	15%				
BY WEIGHT								
Protection to: 10°F 15°F 20°F 25°F								
Methanol	16.8%	13.6%	10%	6.3%				
Propylene Glycol	30%	23.5%	18.3%	12.9%				

WARNING: Add enough antifreeze to allow for a temperature 20°F (11°C) lower than the expected lowest loop fluid temperature entering the heat pump. Insufficient antifreeze concentration could cause the heat exchanger to freeze and rupture, voiding the warranty.

Although many different antifreeze solutions have been employed in geothermal systems, the alcohols such as methanol or ethanol have the most desirable characteristics for groundloop applications. The overall heat transfer characteristics of these fluids remain high although care must be taken when handling pure alcohols since they are extremely flammable. Once mixed in a typical 25% by volume ratio with water the solution is not flammable. In situations where alcohols are not allowed as a loop fluid due to local regulations then propylene glycol is a non-toxic alternative which can be substituted . Propylene glycol should only be used in cases where alcohols are not permitted since the heat transfer characteristics are less desirable and it becomes more viscous at low temperatures, increasing pumping power.

The volume of fluid that your loop system holds can be closely estimated by totaling the number of ft. of each size pipe in the system and referencing **TABLE 9** the for approximate volume per 100 ft.

When the volume of the loop has been calculated and the appropriate amount of antifreeze is ready for addition by referencing **TABLE 9**; drain the equivalent amount of water from the flush cart or mixing barrel and replace it with the antifreeze.

TABLE 6 - Volume of fluid per 100 ft. of pipe							
		Vol	ume /100	Oft.			
Type of Pipe	Diameter	l.gal	gal	L			
Copper	1"	3.4	4.1	15.5			
	1-1/4"	5.3	6.4	24.2			
	1-1/2"	7.7	9.2	34.8			
Rubber Hose	1"	3.2	3.9	14.8			
Polyethylene	3/4" IPS SDR11	2.3	2.8	10.6			
	1" IPS SDR11	3.7	4.5	17.0			
	1-1/4" IPS SDR11	6.7	8.0	30.3			
	1-1/2" IPS SDR11	9.1	10.9	41.3			
	2" IPS SDR11	15.0	18.0	68.1			
Other Item Volumes							
Heat Exchanger	Average	1.2	1.5	5.7			
Purge Cart Tank	See cart manual		TBD				

When using alcohols, be sure to inject below the water line to reduce initial volatility of the pure antifreeze. If the loop is large it may be necessary to refill the tank with antifreeze several times to get all the antifreeze into the loop. Pump the loop for 5 to 10 minutes longer to ensure the remaining fluid has been well mixed.

Initial Pressurization

At this point open all valves in the flow circuit and slowly close off the supply and return flush cart valves in a manner that leaves about **20-30 psig** on the system. If an air bladder expansion tank is used it should be charged to the above pressure before actual water pressure is put on the system . Systems without an expansion tank will experience greater fluctuations in pressure between the heating and cooling seasons, causing pressure gauges to have different values as the loop temperature changes. This fluctuation is normal since expansion and contraction of the loop fluid must be handled by the elasticity of the plastic loop.

- Pressurize the loop to a static pressure of **45 psig**. when installing a system in the fall going into the heating season.
- Pressurize the loop to a static pressure of **25 psig**. when installing a system in the spring or summer going into the cooling season.

After operating the heat pump for a period of time, any residual air in the system should be bled off and the static pressure should be verified and adjusted if necessary. Add additional water / antifreeze mix with the purge cart to bring the pressure back to the original setting if required.

Pipe Insulation

All ground loop piping inside the structure (between the structure entry point and the heat pump) should be insulated with 3/8" thick closed cell pipe insulation to prevent condensation and dripping onto floors or walls.

- NUIES:
- Circulator Pump Module should be mounted vertically to minimize the possibility of air locking the circulators.
- All lines inside the structure and through the wall should be insualted with 3/8" to 1/2" thick closed cell pipe insulation.
- Holes through the foundation / structure should be filled with expanding foam from both sides to prevent leakage.
- Proper drainage material should be used on the outside of the wall to prevent water buildup.
- Pump module fittings are available from Maritime Geothermal Ltd.
- A pressure gauge is recommended if P/T plugs are not installed.
- For most applications, a 1 pump module will accomodate model sizes 09 to 45, and a 2 pump module will accomodate sizes 55 to 80. The total loop pressure drop including the headers, inside piping and heat exchanger drop should be calculated based on the antifreeze mixture and lowest desired entering water temperature. The pump module selected must provide the required flow at this calculated pressure drop value.

Well Water Temperature

The temperature of the well water should be a minimum of $41^{\circ}F$ (5°C), and should normally be $45+^{\circ}F$ (7°C+). In general, groundwater temperatures across the Canadian prairie provinces and Northern Ontario may be close to the $41^{\circ}F$ minimum, while in other parts of southern Canada it will probably be $46-50^{\circ}F$, although local exceptions will exist. In more southern locations, it will be warmer.

The groundwater temperature should be verified as the first step in a proposed open loop installation.

Well Water Flow

The water source is normally a drilled water well with submersible pump that is the same well which supplies domestic water needs. It must be able to supply the required water flow as listed under the Total Flow column in TABLE 10.

TABLE 7 - Required Flow							
Heat Pump Model Size	Heat Pump Flow* gpm (L/s)	Domestic Water Usage gpm (L/s)	Total Flow gpm (L/s)				
25	8.0 (0.50)	4 (0.25)	12 (0.76)				
45	10.0 (0.63)	4 (0.25)	14 (0.88)				
55	12.0 (0.76)	4 (0.25)	16 (1.01)				
65	14.0 (0.88)	4 (0.25)	18 (1.14)				
75	16.0 (1.01)	4 (0.25)	20 (1.26)				
80	17.0 (1.07)	4 (0.25)	21 (1.32)				
* These are minimum water requirements based on an entering water temperature of 45° F.							

For groundwater temperatures of 50°F or greater, these flows can be reduced by 25% if required.

Rather than being estimated by a well driller, the flow from a proposed source well should be measured by performing an extended flow test to be sure it is capable of supplying the required flow over an extended period of time. This is done by flowing the well at the highest possible rate, noting the static water level in the well, and monitoring the pumping fluid level until stable. Unless the fluid level is very high, fluid level monitoring will require a device called a water level sounder. The flow rate can then be measured either by a cumulative gallon meter, a flowmeter, or by timing the filling of a bucket of known size. The test data can be recorded as follows:

TIME	METER READING (USGAL)	TOTAL FLOW (USGAL)	FLOW RATE (USGPM)	WATER LEVEL (FT)	(IN)	WATER LEVEL (FT)
20:25	131735.5	0		20	6	20.5
20:27	131756	20.5	10.3	24	0	24.0
20:30	131779	23	6.0	26	0	26.0
20:42	131847	68	6.1	29	0	29.0
20:51	131906	59	6.6	29	0	29.0
21:03	131982	76	6.3	29	0	29.0
21:32	132156	174	6.0	29	0	29.0

It is best to flow the well for as long as possible (e.g. 12 hours) at the flow rate required by the proposed heat pump size. However, if the test is performed before a larger submersible pump is installed, it may be assumed that any unused water level drop during the test (that is, any distance remaining between the pumping fluid level and the pump intake) would contribute linearly to the flow rate should a larger pump be installed.

In the above example, it was recorded that the flow rate stabilized at 6 gpm, while the water level dropped from 20 to 29 feet (9 feet). If the intake of a larger pump could be placed so that a further pumping fluid level drop of 9 feet could be achieved (total 18 feet), it can be assumed that the flow would double to 12 gpm. Of course, this should be verified with a second test once the larger pump is actually installed.

Well Water Quality

The well water should be tested to be sure it meets minimum standards. Although the threat of poor water quality to open loop installations is often exaggerated, poor water quality can lead to rapid heat exchanger failure or frequent servicing.

First, the well should not produce any sand. Sand will physically erode heat exchanger surfaces, and quickly clog return (injection) wells. Solids or TDS should be less than 1 ppm (1 mg/L) if a return well is used.

To avoid scale formation on the inside of the heat pump's outdoor loop coil, total hardness should be less than 350 ppm / 350 mg/L. In practice, scaling is very rarely a problem at northern groundwater temperatures of 50°F or less because scale does not generally form at low well water temperatures (unlike, for example, in a domestic hot water tank). In more southern climates, the hardness guideline will be a more important consideration. Should scale form, heat pump performance will gradually deteriorate, and will require periodic flushing with a calcium/lime removing solution (see General Maintenance section). If the need for periodic flushing is anticipated, the optional Cupro-Nickel (CuNi) coil and piping should be ordered.

Corrosive (salty) water can cause failure of the inner tube of the heat exchanger, leading to loss of refrigerant and water entering the refrigeration circuit, which ruins the heat pump. If chlorides exceed 20 ppm (20 mg/L), the optional CuNi coil and piping should be ordered. If chlorides exceed 150 ppm (150 mg/L), or significant Ammonia (>0.5 ppm) or H₂S (>0.2 ppm) is present, the use of an open loop system should be reconsidered.

Water Discharge Methods

Water disposal methods vary from area to area. However, some consideration should be made to prevent the cooled discharge water from immediately coming in contact with the supply source. Attempting to return the water to the source well will eventually cool the water so much that the heat pump will shut off on its low pressure safety control.

Acceptable methods for disposing of the waste water are listed below. The waste water is clean; the heat pump has no effect other than reducing the temperature of the water. **Refer** to drawing 000907INF for typical disposal method diagrams.

- Second well (return well)
- Percolation (Drain, ditch, leaching field)
- Pond, river or stream

ENSURE SELECTED METHOD CONFORMS TO LOCAL REGULATIONS.

A return well should be a minimum of **80 ft.** from the supply well for residential applications. The water returned to the well

will not necessarily be pumped into the same aquifer, depending on underground conditions. The return well must be able to supply at least the same quantity of water as the amount you wish to inject into it, preferably much more, since injection capacity will tend to decrease over time due to clogging. It may be necessary to place a pressure-tight cap on the well to keep the return water from flowing out the top of the well. This cap is commonly required since a certain amount of pressure may be needed to force the return water back down the well in cases of limited injectivity.

Water discharged by percolation will generally soak into the ground within a distance of 50 to 100 ft. If suitable care is taken to ensure that the drain pipe runs downhill and the end of the pipe is protected by a bale of hay or spruce bows, the end of the pipe will not freeze as the pipe will empty out when the heat pump shuts off and the water valve closes. A screen should be installed on the end of large discharge pipes, to prevent animals from building nests inside during extended 'off' periods and causing a backflooding risk for open water drains.

When snow comes it will usually cover the entire process much like a small spring. It is recommended that the pipe be below the frost line when possible for maximum freeze protection.

When discharging into a river or stream, or above the surface of a pond, the same guidelines should be followed as described in the paragraph above for the percolation method.

When discharging the waste water below the surface of a pond or lake, the discharge pipe should be placed below the frost line to prevent the pipe from freezing. As opposed to the percolation method, water will remain in the end of the pipe. It is recommended that the surface of the pond be lower than the installation location of the heat pump. This reduces the back pressure generated by the weight of the water in the pond.

Water Valve

Water flow through the heat pump is turned on and off by a water valve, which is controlled by a 24VAC signal from the heat pump. It should be installed on the OUT pipe of the heat pump, so that the heat exchanger remains full of water at all times. There are two types of water valves available from Maritime Geothermal.

Most installations use a 'Taco' slow closing motorized ball valve (EBV). This takes ~5 seconds to close, and avoids the water hammer which can occur with faster acting valves. There is also a more economical fasting acting 'Rainbird' solenoid valve available, for applications where water hammer is not expected. Both come with a wiring harness, which plugs into a connector behind the pipe post of the heat pump. This both allows the heat pump to properly control the valve, turning the water flow on and off with the compressor, and also tells the heat pump to select the higher low pressure safety control for open loop (since there is no antifreeze present).

Water Flow Control

A flow restricting ('Dole') valve is highly recommended, installed downstream of the water valve. This is a passive (nonelectrical) device which automatically varies the size of its rubber orifice in order to restrict flow to its stamped gpm value, regardless of water pressure. This is important in order to provide some backpressure to the water system, which could otherwise be too low for the comfort of people taking showers or otherwise using the domestic water system. It also prevents excessively low refrigerant discharge pressure when in cooling mode. Dole valves are available as an accessory. Dole valves can emit a 'whistling' sound if the pressure drop through them is high. Therefore, they should be placed where the noise will not cause a nuisance, e.g. outside the basement wall or perhaps in a well insulated box.

Submersible Pump Selection

Of course, the submersible pump must be large enough to supply the flow required by the heat pump. This is usually not a problem, pumps often being oversized by default.

However, if a conventional fixed speed pump is too large, its fixed capacity will exceed that of the Dole valve at reasonable pressure switch settings (<80 psi). This will cause the submersible pump to cycle on and off continuously while the heat pump is running, causing excessive wear to the submersible pump. The installation of a large air bladder tank will cause the cycles to have a longer duration, but will not solve the problem.

To avoid this problem, the fixed speed pump should be sized according to its head vs. flow curve. The required head should be calculated using height between the pumping fluid level in the well and the elevation of the heat pump, pipe pressure drop at nominal flow rate, desired system water pressure, and any back pressure from return well. Then a pump can be selected that delivers the nominal flow for the chosen heat pump size at that head. In case this calculation is not exact, a variety of Dole valves can be carried by the installer, and a larger Dole valve installed if submersible pump cycling is observed.

An alternate approach would be to install a variable speed submersible pump, which varies its speed to maintain a constant water system pressure. Or use a mechanical 'cycle stop' valve, which is installed upstream of the air bladder / pressure tank and varies its orifice to put backpressure on the pump during periods of low flow in order to keep it from cycling off.

Stage 1 vs. 2 on Open Loop

In an open loop installation, the submersible water pump draws significant power compared to the heat pump, especially for smaller heat pump sizes. This is particularly true when using a conventional fixed speed submersible pump. Under normal usage, the efficiency of such a pump is not particularly important, due to short run times in a domestic water system. When used with a geothermal heat pump, which can run all day on the coldest days of the year, it is highly recommended that effort be made to select an energy efficient submersible pump. However, these may be hard to find.

The significant power draw of submersible pump will probably negate the COP benefit of running the heat pump on stage 1. In this case, it is recommended to jumper Y1 and Y2 together at the heat pump terminal strip, in order to satisfy the heating demand as quickly as possible and minimize run time. For the same reason, slightly oversizing the heat pump is acceptable on open loop applications, although this will require higher water flow.

Plumbing the Heat Pump

The port connections for the outdoor loop are 1" brass FPT fittings. They are marked as OUTDOOR IN and OUT-DOOR OUT.

Plumbing lines, both IN (supply) and OUT (discharge), must be of adequate size to handle the water flow necessary for the heat pump. A 1" copper or plastic line should be run to the Outdoor IN (Supply IN) pipe of the heat pump. Similarly, a 1"' line should be run from the Outdoor OUT (Supply Out) pipe to the method of disposal. P/T plugs should be installed at each port. See **Figure 1** in the Ground Loop section for a description of P/T plugs. The water valve should be installed in the OUT (discharge) line. Refer to **drawing 000907CDG** at the end of this section for the recommended setup. Placing the water valve in the discharge line ensures that the heat exchanger inside the heat pump remains full of water when the unit is not running. Unions or some other form of disconnect should be used so that the coaxial heat exchanger may be accessed should it required cleaning.

As mentioned earlier, the heat pump has an electrical connector for the water valve just inside the case. After the water valve is installed, run the valve harness into the case through the hole provided. Remove the jumper plug from the valve connector and connect the harness in its place.

Optionally, a water flow meter can be installed in the discharge line so that the exact amount of water flowing can be determined at a glance. It should be placed between the Outdoor OUT (Supply OUT) pipe of the heat pump and the water valve.

With proper flow, there should be **5-7°F (3-4°C)** delta T between the IN and OUT water temperatures of the heat pump when operating in the heating mode.

All water line valves on both the supply and discharge lines should be either BALL or GATE valves. GLOBE valves have a higher pressure drop, meaning more pumping power to maintain the required flow to the heat pump.

Pipe Insulation

All ground water piping to and from the Outdoor Loop ports on the heat pump should be insulated with 3/8" closed cell pipe insulation, to prevent condensation and dripping onto floors or walls.

BACnet Control

If controlling the system via the BACnet interface, skip the entire **Operation** section. In this case, see the **BACnet Interface** section later in this manual for network specification and BACnet object names.

Setpoint Control

One of the features of the EMW's GEN2 Control Board is built in temperature control functionality known as "Setpoint Control". This is an internal routine to sample the water temperature between the heat pump section and the buffer tank to determine if hydronic heat is required.

Both water IN and OUT temperatures are measured using sensors on water lines inside the unit, but only the OUT temperature is used for control. The indoor circulator pump is turned on at regular intervals to refresh the water temperature. Its value is displayed in the **Tank Temperature** box on the PC App's **View --> Setpoint Control** screen and on the LCD. If this temperature shows **NC**, then either the probe is not connected to the board or there is a problem with it. (See following chapter for more details on using the PC App.)

The heat pump will cycle the indoor circulator on and off when the unit is idle to sample the water temperature. When hydronic heating mode ends, the indoor circulator will continue to run for 30 seconds. It will then cycle with an OFF time and ON time as set by the **Set ICR Sampling** popup which appears when **SET** is clicked on the **View --> Setpoint Control** screen. The timer counts down the time remaining before the next switch between ON/OFF. The indoor circulator indicator will indicate when the circulator is ON, OFF or SAMPLING. The default sampling times are 2 minutes ON and 6 minutes OFF. The LCD display will also indicate when the ICR is sampling (ON). The *Timer Override* button will reduce the countdown timer to 10 seconds.

TABLE 8 - Typical Temperature Settings							
HEATING							
	Sta	ge 1	Stag	je 2	Stage 3 (AUX)		
Item	°F	°C	°F	°C	°F	°C	
Setpoint	108	42	105	41	102	39	
Delta	8	4	8	4	8	4	
Activation *	100	38	97	37	94	35	
Delay					10 minutes		
		CO	OLING				
	Sta	ge 1	Stag	je 2			
ltem	°F	°C	°F	°C			
Setpoint	45	7	48	9			
Delta	8 4		8	4			
Activation *	53	11	56	13			
*Activation is determined by the Setpoint and Delta values							

If the in-floor heating design is well done, the heating setpoints may be able to be lowered. They should be set to lowest value that still maintains an acceptable comfort level in order to achieve maximum hydronic mode efficiency. Increasing Delta values will also increase efficiency due to longer runtimes and hence a reduced number of compressor starts.

Outdoor Reset

An optional Outdoor Reset control algorithm is available for heating mode. This refers to built-in functionality which reduces the heating temperature setpoints at warmer outdoor temperatures, as measured by an accessory outdoor temperature sensor.

The first step after installing the outdoor sensor is to enable it in the **Tools-->Configuration** window.

rieaci unp / criller	пеаститр	
Outdoor Ambient	Enabled	~
Summer Sethack	Diaphlad	

Then to enable Outdoor Reset, click on the Outdoor Reset button at the bottom of the Setpoint Control screen. The button will change to say Enabled, the indicator will come on, and the Outdoor Reset table will appear.

The Heating Setpoints Adjustments will move to the top row of the Outdoor Reset Table. The Delta Adjustments will remain where they were. The current Setpoint Value based on the outdoor temperature is displayed where the Setpoint Adjustments were originally. The Outdoor Reset Table row in use based on outdoor temperature will turn red.

The Outdoor Reset Table is created by subtracting the value of the Outdoor Reset Factor from the original setpoints once for each table row . The original setpoints are located in table row 0 (<10F). The next row down equals the row above minus the Outdoor Reset Factor.

The original setpoints are the hottest temperature desired. The calculated row setpoints will decrease as the outdoor temperature rises, and increase back towards the original setpoints as the outdoor temperature drops. This improves system efficiency by maintaining a lower tank temperature when hotter tank temperatures are not needed due to the warmer weather.

Auxiliary Heat (Stage 3)

While stage 1 and stage 2 are the two stages of compressor (and therefore heat pump) operation, stage 3 operates the electric elements in the built-in buffer tank. These provide auxiliary heat in case the heat pump is sized to less than the maximum heat load, or backup heat in case of a heat pump problem.

The unit is shipped with the electric heat breaker in the off position. Before turning it on, ensure the tank is full of water and pressurized, since an electric element that is not under water will burn out in a matter of seconds.

To prevent element damage and also to protect against the risk of explosion should the tank be filled with flammable vapours from antifreeze instead of with water or water/antifreeze mixture, there is a safety pressure switch mounted to the side of the buffer tank. Note that the electric heat contactor will not engage unless the pressure in the indoor loop is above 10 psig.

Status Indicator Lights

The EMW-Series unit has three indicator lights on the front of the heat pump. They are described in the table.

TABLE 9 - Indicator Lights

Colour	Indicates				
Green	Compressor ON				
Yellow	Electric Elements ON				
Red	Trouble (Alarm - Locked out)				

PC Application (PC App)

NOTE: Before using the PC Application, refer to **Appendices** for installation instructions for the PC Application and USB driver for the COM port. Both must be installed in order to run the PC App and communicate with the control board.

Connect a USB cable between the PC and the control board USB connector located at the bottom center of the board. Use the Windows Start menu to launch the PC App. You should see a screen similar to the one below. The revision of the PC APP is shown in the top left corner of the screen. Click the **Connect** button to begin communications with the control board.

MGT GEN2 PC APP V1.51 Control Board, in the V2.84	-		×			
File View Graphs Tools Windows Help Connect OFFLINE O						
INITS STANDARD MANUAL OVERRIDE Hydronic Control: SETPOINTS O SYNC Parameters DATALOG RATE 2 mins v GRAPHS						
GEN2 Board Connected Read 110 of 110 Objects PC Date and Time: 12/10/2018 2:17:32 PM Control Board Date and Time: 10/12/2018 14:15:35						

Once connected, the menus and buttons will become accessible, the number of Objects available and Read should appear (they should be the same) and the Polling LED will begin to flash. The PC time and date will appear at the bottom left corner of the screen. Clicking on "Control Board Date and Time" will display the current control board date and time. If the date and time need to be adjusted, click on menu **Tools—>Set Date and Time**. The control board date and time will be set to that of the PC.

MGT GEN2	MGT GEN2 PC APP V1.51 Control Board Firmware V2.84													
File View	Graphs	Tools	Windows	s Help	Disconnect			HOLD	Parameters In Sync 🥥	GRAPH REFRESH	10 secs	CLEAR	ALL	
			UNITS	STANDARD	MANUAL O	VERRIDE	Hydronic Control: SETPOINTS 🔾		SYNC Parameters	DATALOG RATE	2 mins	GRAP	HS	
GEN2 Board Co	iEN2 Board Connected Read 110 of 110 Objects PC Date and Time: 12/10/2018 2:19:57 PM Control Board Date and Time: 10/12/2018 14:15:35													

PC Application Menus

The following pages describe the PC APP's menus in detail. There are six menus: File, View, Graphs, Tools, Windows, Help.

File Menu: This menu handles page arrangements. If one or multiple pages are open and arranged as desired for viewing, this page arrangement may be saved and re-used the next time the PC APP is used.

File-->Open:Opens a saved page arrangement.File-->Save:Saves the current page arrangement under the current name.File-->Save As:Save the current page arrangement under a new name.File-->Exit:Exits the PC Application.

Windows Menu: This menu is used to arrange windows (pages), or to bring a particular window to the front.

Windows-->Cascade:Arranges windows one in front of the other each with a small right and down offset from the last.Windows-->Tile Vertical:Arranges windows side by side, stretching them fully from top to bottom.Windows-->Tile Horizontal:Arranges windows up and down, stretching them fully from left to rightWindows-->Close All:Closes all open windows.

Help Menu: This shows information about the PC Application.

Help-->About: Displays the window shown to the right.

About MGT GEN2 PC APP							
About MGT GEN2 PC APP	MGT GEN2 PC Application Version 1.51.0.0 Copyright © 2018 Maritime Geothermal Ltd.						
	ОК						

View Menu:

This menu handles all of the operational viewing screens. Clicking on the View submenus will open the page in the PC APP's frame. The next few pages of the manual show screenshots of each of the pages along with some descriptions of what is on each page.

View-->Control Panel: The main control panel window will open, shown below.

View-->Setpoint Control:

Shows the on-board temperature control screen. This screen is only available when **Control Source HYD** on the Configuration Page is set to **Setpoints** (not **BACnet**).

Refer to the **Operation** chapter earlier in this manual for details.

View-->Alarms, Limits and Faults

The alarms page has four tabs:

- 1. ALARMS Current alarm status, alarm count, high and low refrigeration alarm cutout values, and short cycle timer.
- 2. ALARMS LIST List of alarms that have occurred since the PC APP has been operating (this will be lost when the PC is disconnected from the control board.)
- 3. LIMITS Limits in effect which prevent compressor operation but that do not cause an alarm.
- 4. FAULTS List of board hardware faults.

View-->Alarms, Limits and Faults (ALARMS Tab):

NOTE: Greyed out Alarms in the PC APP are not applicable to the system setup and are not monitored by the control board. NOTE: Refer to Alarms and Faults screenshot below to see which alarms have a count.

Alarms without a count: These alarms only occur one time at which point they immediately create a Permanent Alarm.

Alarms with a count:	When an alarm occurs the compressor will stop, the alarm count will increase and the Short Cycle Timer will start. When the SC Timer expires the compressor will re-start. If no further alarms occur within Count Reduce Time , the alarm count will be reduced by 1. If another alarm occurs within Count Reduce Time (see Configuration Page) the count will increase by 1. If alarms continue to occur, when the alarm count reaches the Maximum Count value a Permanent Alarm will occur.
Master Alarm:	This alarm occurs when any permanent alarm occurs. It is used to simply indicate that there is an alarm.
Permanent Alarm:	The compressor will be locked out until the <i>Permanent Alarm</i> is manually reset either by cycling the power or clicking on the <i>RESET</i> button
Low Pressure:	A low pressure alarm occurs when the suction pressure drops to or below the <i>Low Pressure Cutout</i> value. The low pressure is checked just before a compressor start, if it is OK the compressor will start, otherwise an alarm will occur. When the compressor starts, the low pressure alarm will be ignored for the number of seconds that <i>Low Pressure Ignore</i> is set to, after which the low pressure alarm will be re-enabled. This allows a dip in suction pressure below the cutout point during startup without causing a nuisance alarm.
High Pressure:	A high pressure alarm occurs when the discharge pressure rises to or above the <i>High Pressure Cutout</i> Value.
Compressor Monitor:	This alarm occurs when the compressor protection module sends a fault signal to the control board, gener- ally due to the compressor windings overheating. (Most residential models do not have compressor pro- tection modules.)
Compressor Status:	This alarm occurs when there is a current draw on the compressor but no call for the compressor to be on (i.e. welded contactor) or when there is a call for the compressor to be on but there is no compressor current draw (i.e. manual high pressure control is open or contactor failure). Requires current sensor accessory.
Phase Monitor:	This alarm occurs when the Phase Monitor detects a fault condition and sends a fault signal to the control board. For three phase units only and requires Phase Monitor accessory.
Low Charge:	This alarm occurs if the EEV has been at >99% for 20 minutes within first hour of a cycle.
Loss of Charge (LOC):	This alarm occurs if both the low pressure and high pressure sensors are below 30 psig (207kPa).
Outdoor WV:	Outdoor loop water valve end switch did not close (open loop only).

Go the Alarms Troubleshooting section of the Troubleshooting chapter of the manual to address alarm issues.

View-->Alarms, Limits and Faults (ALARMS LIST Tab):

This tab show a history of alarms that have occurred since the PC APP was connected to the control board. This list will be lost when the PC APP is disconnected.

Each alarm that occurs while the PC APP is connected to the control board will appear here. The alarm type and a time stamp will be shown. The alarms list will be erased when the PC APP is disconnected from the control board.

Alarms, Limits and Faults						
ALARMS ALARMS LIST	LIMITS FAULTS					
CLEAR	ALARMS LIST					
Alarm Description	Time Stamp					
Loss of Charge#1 alarm PERMANENT ALARM#1 Loss of Charge#1 alarm PERMANENT ALARM#1 Loss of Charge#1 alarm PERMANENT ALARM#1	12/18/2018 11:42:51 AM 12/18/2018 11:42:51 AM 12/18/2018 1:44:43 PM 12/18/2018 1:44:43 PM 12/18/2018 1:44:56 PM 12/18/2018 1:44:56 PM					

This button will erase the alarm events in the Alarm List.

View-->Alarms, Limits and Faults (LIMITS Tab):

This tab shows temperatures that are out of limits but have not caused an alarm. These limits are shown on the **Tools-->Configuration** page.

View-->Alarms, Limits and Faults (FAULTS tab):

This tab shows hardware faults that could occur. If one of these faults occurs there may be a problem with the control board hardware, with LCD Display and buttons, or with a sensor.

If a fault occurs, some things to try:

- Turn the power to the heat pump off for 20 seconds and then back on again.
- Use the menu item Tools--->Reset to Factory Defaults. If this clears the fault then the system configuration will have to be set up again.
- For LCD Display or Menu Button faults, turn off the power, disconnect and reconnect the cable between the LCD display board and the control board, then turn the power back on again.

If the fault persists then there is most likely a hardware problem, and the sensor, control board, or LCD display board will need to be replaced.

IMPORTANT NOTES: The heat pump will not operate if the Outdoor Ambient probe (HTS) is faulty or disconnected. The auxiliary will continue to operate but its setpoint value may be reduced if using the Outdoor Reset function.

> If the Indoor OUT (I OUT) probe is faulty or disconnected, neither the heat pump nor the auxiliary will operate if using Setpoint Control. They will continue to operate under BACnet control.

starts per hour.
View-->Water Lines

Shows the water line temperatures.

Water Lines	— — X
OUTDOOR LOOP	INDOOR LOOP
IN O Auto NC °F	IN O Auto NC *F
OUT OUT Auto NC °F	OUT Auto NC °F
Delta T – °F	Delta T 🛛 — °F
,	5

View-->Digital Inputs

Shows the digital inputs and their individual status (ON/OFF). They may be individually controlled when in Manual Override Mode in order to facilitate troubleshooting.

Digital Inp	uts		_ 🗆 🗙
Auto	DI_0	Auto	PM 1 🛛 🌑
Auto	DI_1	Auto	PM 2
Auto	DI_2	Auto	ODFLO
Auto	AR O	Auto	IDFLO

View-->Digital Outputs

Shows the digital outputs and their individual status (ON/OFF). They may be individually controlled when in Manual Override Mode in order to facilitate troubleshooting.

Digital Out	puts				– – ×
Auto	STAGE1	Auto	PHS1	Auto	L1
Auto	STAGE2	Auto	PHS2	Auto	L2
Auto	RV1 🔵	Auto	OV1	Auto	L3
Auto	RV2	Auto	IV1	Auto	!HYD AUX 🜔
Auto	SOL1	Auto	HYD_AUX	Auto	L5 🔵
Auto	SOL2	Auto	DO 3	Auto	L6
O Auto	ICR	O Auto	L(Lockout) 🥥	Auto	SH 🌒

View-->Analog Inputs

Shows the Analog inputs and their individual settings and values.

Click on the *EDIT* button to modify the blue boxes (button will now say *SAVE*). For each channel a name may be selected (up to 16 characters), and the multiplier and Offset values may be set to accommodate the connected sensor scaling. Signals may be 4-20mA (channel jumper on board ON) or 0-10VDC (channel jumper on board OFF). A variety of units are also available for selection of common measurement types. Click on *SAVE* to save the changes. Values are kept even when power is removed from the unit.

View-->PWM Channels

Shows the PWM channels and their individual status (0-100%). They may be individually controlled when in Manual Override Mode in order to facilitate troubleshooting.

EMW-series does not use any PWM channels.

Analog	nputs					- - ×
Ch.	Name	VDC	Multiplier	Offset	Value	Units
AI 0	Stage1_Current	0.000	10.00	0.00	0.00	Amps 🗸 🗸
AI 1	Stage2_Current	0.000	10.00	0.00	0.00	Amps 🗸 🗸
AI 2	Al2	0.000	1.00	0.00	0.00	Volts 🗸
AI 3	Al3	0.000	1.00	0.00	0.00	Volts 🗸
AI 4	Cold_Tank(CTS)	0.000	1.00	0.00	1.0	% ¥
AI 5	Hot_Tank(HTS)	0.000	1.00	0.00	0.00	% ¥
						EDIT

Graphs Menu:

This menu is a list of the available graphs. Graphs are real-time and show a time stamp of when the recording started as well as a current time which will show up if the graph is screen captured. Each graph has a CLEAR button which will erase the stored data and restart the graph. There is also a master CLEAR ALL GRAPHS button at the top right of the PC APP; this will clear all open graphs and re-start them all simultaneously to keep them in sync with each other. The refresh rate for the graphs is also located at the top right of the PC APP.

TIP: To screen print a graph and save it as a picture, press Print Screen on the keyboard and then paste into MS Paint or other graphics program. Select the desired graph with the selection tool and copy it to a new MS Paint, then save the file as the desired name.

Gra	ohs Tools Windows Help Discon	
	Control Signals Graph	ON/OFF status of the system control signals (demands).
	Operation Mode Graph	ON/OFF status of heating and cooling modes.
	EEV Position / Superheat Graph	EEV position and resulting superheat.
	Vapor Line Temperature Graph	Suction temperature.
	Refrigeration Pressure Graph	Suction and discharge pressures.
	Refrigeration Temperature Graph	Evaporation and condensing temperatures.
	Water Lines Graph	2 tabs: one for indoor IN/OUT/Delta T, and one for outdoor IN/OUT/Delta T.
	Discharge Pressure Vs Hot Tank Graph	Discharge pressure vs tank temperature.
	Analog Input Graphs	All analog input channels (0-10VDC or 4-20mA).
	PWM Channels Graph	All PWM / 0-10VDC output channels and one PWM / 0-10VDC input channel.
	Input Power Graph	For future use.

Below is an example of a typical graph screen. Items that are checked will be plotted, unchecked items will not. The graph screens show the time the graph started as well as the current time to time stamp the graph when screen printed.

Tools Menu:

This is where various tools for system setup and monitoring are located.

Tools-->Configuration (System Configuration tab):

This is where the system setup is done. Settings should only be changed by a person who has a good understanding of system operation. Improper settings could cause the system to operate poorly or not at all.

Tools-->Configuration (Alarms and Delays tab):

Click on the UP/DOWN arrows to change the value, noting that values have both a low and high limit.

Tools-->Calibration:

Generally there is no need for calibration.

The suction and discharge pressures may be calibrated in increments of 1 psi if there is a discrepancy in the readings when compared to a known good reference.

Temperature sensors may be adjusted in increments of 0.1°F. There is an **AUTO CALIBRATION** routine in the program that continually calibrates the temperatures sensors against an on board reference resistor by applying an offset to the temperature sensors. Calibration adjustments made here are in addition to the Auto Calibration routine.

Tools-->Reset to Factory Defaults:

This will reset all parameters to default values.

THE SYSTEM MUST BE RECONFIGURED AFTER A RESET IS PERFORMED.

A reset will default the system to a two stage ATW Series Size 65 with Signals as the control source. Calibrations, alarm delays, analog configurations, compressor statistics, and Setpoint Control values will be returned to defaults as well.

Factory Defaults	×
Reset Parameters to Factory Defau WARNING!!! SYSTEM MUST BE RE-CONFIGURED FOR PROF All parameters will be reset to defaults including Ca Configurations and Compressor Stats.	ilts? 'ER OPERATION. librations, Analog
Yes No	Cancel

Tools-->Set Date and Time:

This will synchronize the date and time of the control board with the computer's date and time, and will be necessary for new units or units that have been powered off for several days or more.

The date and time of both the computer and the control board are shown in the status bar at the bottom of the PC App.

Tools-->Datalogging (Datalog tab):

The datalog rate is set via the dropdown box at the top right of the PC App main window. Starting with firmware version 2.85, a log will be recorded at the datalog rate whenever the heat pump is powered on, making it easy to compare datalogs from multiple units. The maximum number of datalog records is 32,224, which will take 45 days to fill up at the default recording rate of 2 minutes.

Note that loading datalogs is time-consuming. It is suggested to leave the **# of LOGS** at **25** until it is shown that the start date selected is suitable.

Tools-->Datalogging (Enable/Disable tab):

Click on the checkboxes to customize which columns are shown/hidden in the datalog table.

- Datalogging					
Datalogging Datalog Enable/Disable DI - Digital Inputs TS DU - Digital Outputs TS PWM - PWM Outputs OI A/D A/D - A/D Converter C, RTC - Real Time Clock I	Temp Sensor Faults S1 - Vapour Line1 S2 - Vapour Line2 DA - Outdoor Ambient AL - Calibration IN - Indoor IN OUT - Indoor IN _IN - Outdoor IN _UN - Outdoor OUT	Temp Sensors ✓ Outdoor Ambient ✓ I_IN ✓ I_OUT ✓ O_IN ✓ 0_OUT	Analog IN Group ALL ANALOG Analog IN CH0 Analog IN CH1 Analog IN CH2 Analog IN CH2	PWM Group ALL PWM PWM1 PWM2 OV2(%) IV2(%)	MODBUS Group ALL MODBUS MODBUS Data 1 MODBUS Data 2 MODBUS Data 3 MODBUS Data 4
FM - EEPROM MN - Menu Buttons LCD - LCD Display MB - MODBUS Comms Pr LF H H H	OUT - Indoor OUT _IN - Outdoor IN _OUT - Outdoor OUT ITS - Hot Tank (AI5) TS - Cold Tank (AI4) ressure Sensor Faults PS1 - Low Pressure 1 IPS2 - Low Pressure 2 IPS2 - High Presssure 2	☑ O_IN ☑ O_OUT	Analog IN CH2 Analog IN CH3 Analog IN CH3 Analog IN CH4 Analog IN CH5	 ○ VV2(%) □ IV2(%) □ PWM IN 	MODBUS Data 3 MODBUS Data 4 MODBUS Data 5

Tools-->MODBUS:

For future use.

Tools-->Objects:

This is a window to display the runtime data, which is not stored when the power is turned off. No changes are possible.

bject Properties								
Number	Name	Туре	Present Value	Setpoint	Status Bits	Out of Service	ALARM	FAULT
46	ESX_TS2	Analog Input	0.0	0	0	False	False	False
47	ESX_TS3	Analog Input	0.0	0	0	False	False	False
48	ESX_TS4	Analog Input	0.0	0	0	False	False	False
49	ESX_TS5	Analog Input	0.0	0	0	False	False	False
50	ESX_TS6	Analog Input	0.0	0	0	False	False	False
51	LPS1	Analog Input	0.0	0	0	False	False	False
52	HPS1	Analog Input	0.0	0	0	False	False	False
53	LPS2	Analog Input	0.0	0	0	False	False	False
54	HPS2	Analog Input	0.0	0	0	False	False	False
55	INDOOR_FAN_TAC	Analog Input	0.0	0	0	False	False	False
56	AIO	Analog Input	0.0	0	0	False	False	False
57	Al1	Analog Input	0.0	0	0	False	False	False

Tools-->Parameters:

WARNING! The Parameters page is for advanced use only. Changing parameter values can cause the system to stop functioning properly.

The parameters page shows all configurable memory spaces with their name and current value and allows them to be edited directly. To change a parameter value type in the new value and press ENTER.

System Parameters	System	m Parameters
WARNING!! Changing System Parameters of improperly. Do you wish to continue?	could cause the system to operate	Parameters have been updated.
Yes	No Cancel	ОК
Clicking on menu item Tools>Parameters will display this warning.	Parameters SYNC Parameters	
Click on YES to open the parameters page.	Name	Value ^
	MODEL SERIES	9 = Type in the new value
	MODEL SIZE	9 and press ENTER, the
Click this button to reload the	MODEL FUNCTION	3 confirmation popup will appear, click on OK .
control board memory.	REFRIGERANT_TYPE	0
	HEATING_SUPERHEAT_SETPOINT	8
	COOLING_SUPERHEAT_SETPOINT	8
	JUMPERS	7169
	JUMPERS2	64
	ALARM_MASKS	4
	TS_FAULT_MASKS	249
	CONTROL SOURCE AIR	1

Tools-->SYSTEM TIMERS:

This page shows all internal timers by name along with their current values.

🚽 Syst	em Timers		
	Name	Value	Time Value 🗠
•	Stage 1 Short Cycle Timer	0	0:0
	Stage 2 Short Cycle Timer	0	0:0
	Stage 1 Runtime	0	0:00:0
	Stage 2 Runtime	0	0:00:0
	Stage 2 Timed ON in:	0	0:0
	Air Auxiliary S1 Timed ON in:	0	0:0
	Air Auxiliary S2 Timed ON in:	0	0:0
	Hydronic Auxiliary Timed ON in:	0	0:0
	Indoor Loop Circulator Sampling	0	0:0
	Outdoor Reset Hold	0	0:0
	Wait to Defrost	0	0:0
	Defrost Timer	0	0:0
	Defrost Hold Previous Values (Temp Rise)	0	0:0
	Defrost Switch Delay	0	0:0
	Stage 1 Low Pressure Ignore	0	0:0
	Stage 2 Low Pressure Janore	٥	0.0

Tools-->Jumpers:

This page shows internal jumper configurations, for developers.

Jumper Configurations		
JUMPERS 7169		
Unused Y2 Disabled in Cooling Heat(0) / Cool(1) Priority Stages - One(0) / Two(1)	Summer Setback Enabled PC Rejection - Room(0) / Pool(1) Units Heater(0) / Chiller(1)	Outdoo Setr
0001	1 1 0 0	00(
15 12	11 8	7
JUMPERS 2 64		
Unused Spare Cold Tank Enabled Hot Tank Enabled	S1 Top Up Enabled System Enabled (ICR/HYD AUX) Stage2 Enabled Stage1 Enabled	HYD A Moi F
0000	0000	010
15 12	11 8	7

LCD Display & Menus

parameter menu level.

These are examples of the unit status and operating data displayed when at the message display level (top level). Pressing ENTER will enter into the menu levels beginning with the Main Menu. Pressing OK will toggle between message auto scroll and manual scroll modes. UP and DOWN do not do anything if in auto scroll mode; they cycle through the messages if in manual scroll mode.

ENTER (From Main)	ENTER (First Press)	ENTER (Second Press)	ENTER (Third Press)	Description	
Setpoint Control — Setpoints — Heating (only if using Setpoint control)	— Setpoints	— Heating	— Stage 1 Setpoint	Stage 1 stops when water temperature rises to this point.	
		— Stage 1 Delta	Stage 1 starts when water temperature drops below setpoint by this amount.		
	— Stage 2 Setpoint	Stage 2 stops when water temperature rises to this point.			
	— Stage 2 Delta	Stage 2 starts when water temperature drops below setpoint by this amount.			
		— AUX (S3) Setpoint	Stage 3 stops when water temperature rises to this point.		
			— AUX (S3) Delta	Stage 3 time delay starts when water tem- perature drops below setpoint by this amount. (Stage 3 starts immediately if time delay is set to 0).	
			— AUX (S3) Delay	Delays Stage 3 start by timer amount.	
	— Cooling	— Cooling	— Cooling	— Stage 1 Setpoint	Stage 1 stops when water temperature drops to this point.
		— Stage 1 Delta	Stage 1 starts when water temperature rises above setpoint by this amount.		
		— Stage 2 Setpoint	Stage 2 stops when water temperature drops to this point.		
			— Stage 2 Delta	Stage 2 starts when water temperature rises above setpoint by this amount.	

ter menu level.

		Main Men	u Continued			
ENTER (From Main)	ENTER (First Press)	ENTER (Second Press)	ENTER (Third Press)	Description		
Summer Setback	— Enable Setback?	— Enable		Enable summer setback.		
		— Disable		Disable summer setback.		
System EN/DIS	— Enable System?	— Disable		Enable compressor, auxiliary, and ICR.		
		— Enable		Disable compressor, auxiliary, and ICR.		
Service Mode	— Service Mode?	— No		Do not enter Service Mode.		
		— Yes		Enter into Service Mode.		
EEV Control	— EEV1	— Auto/Manual	— Auto	Puts EEV in Auto mode		
			— Manual	Puts EEV in Manual mode		
		— Manual Position	— EEV Position (%)	Enter desired EEV position		
Configuration	— Control HYD	— BACnet		BACnet control—see BACnet section		
		— Signals		N/A		
		— Setpoints		On-board water temp. control—see SET- POINT CONTROL section.		
	— OD Fan Reduction	— OD Fan Reduction (%)		Enter desired outdoor fan speed reduction		
	— Time Delays	— Short Cycle	— Short Cycle (min)	Enter short-cycle timer value		
		— Heat/Cool	— Heat/Cool (min)	Enter minimum off time between modes		
	— Units	— Standard		Standard units		
		— Metric		Metric units (does not affect calibration units)		
	— Set Time	— Hours		Set the system hours.		
		— Minutes		Set the system minutes.		
	— Set Date	— Day		Set the system day.		
		— Month		Set the system month.		
		— Year		Set the system year.		
Calibration	— Suction 1		Suction Pressure.	Calibration in 1PSI intervals.		
	— Discharge 1		Discharge Pressure	Calibration in 1PSI intervals.		
	— Vapour Line 1		Suction line tempera- ture	Calibration in 0.1°F intervals		
	— Outdoor Ambient		Outside air tempera- ture	Calibration in 0.1°F intervals		
	— Outdoor IN Temp			Calibration in 0.1°F intervals		
	— Outdoor OUT Temp			Calibration in 0.1°F intervals		
	— Indoor IN Temp			Calibration in 0.1°F intervals		
	— Indoor OUT Temp			Calibration in 0.1°F intervals		
NOTE: Calibration	is generally not requir	ed. Pressure sensor	s may be calibrated a	ainst a known source if needed All		

temperature sensors have an Auto Calibration feature.

BACnet Interface

The BACnet interface is an MS/TP connection via RS-485 twisted pair. There is a termination jumper if required to terminate the connection. It is marked as TERM on the control board, and is located just above the BACnet connector.

The connector on the control board is a three wire removable screw connector. The signals are as follows:

- A: Communications line (+) (right pin)
- B: Communications line (-) (middle pin)
- C: Ground connection (left pin)

Vendor:	Maritime Geothermal Ltd.
Vendor ID:	260
Model Name:	MGT GEN2 Control Board

The following parameters can be set via the LED Display Configuration Menu or via the PC APP Configuration Page.

- 1) Baud rate
- 2) Instance number

3) MAC address

Outdoor Ambient	Disabled \sim	BACnet Configuration Baudrate MAC Address Instance# IMPORTANT:
HYD AUX in Defrost	\sim	38400 24 124 Cycle power to invoke changes.

The data is available regardless of the selected control method. In order to control the unit via the BACnet interface, set the Control Source to BACnet either by using the PC APP configuration page or the display menus.

The following tables provide a list of the objects applicable to this model series, along with a description of each. Note that there may be other objects available that do not apply to this model.

TABLE 10 - BACnet OBJECTS - CONTROL SIGNALS (READ/WRITE)

Name	Data Type	ID	Property	Description		
SYSTEM_Y1A	Binary Value	BV0	Present Value	Stage 1 (compressor) (active is on)		
SYSTEM_Y2A	Binary Value	BV1	Present Value	Compressor stage 2 solenoid (active is on)		
SYSTEM_O	Binary Value	BV2	Present Value	Switch to cooling mode (RV#1). Inactive=HEATING, Active=COOLING		
BACnet_Units	Binary Value	BV9	Present Value	Select the units to use for the BACnet objects		
Note: object nam	Note: object names may be subject to change without prior notice.					

TABLE 11 - E	TABLE 11 - BACnet OBJECTS - OPERATION MODE Description (Read Only)					
Name	Data Type	ID	Present Value	Description		
Operation Mode	Analog Value	AV5	-	Integer value represents operating mode.		
			2	Hydronic heating		
			3	Hydronic cooling		
			11	Hydronic heating OFF		
			12	Hydronic cooling OFF		
Note: Object is type Analog Value but value will always be an integer value. Note: Objects may be subject to change without prior notice.						

TABLE 12 - BACnet	TABLE 12 - BACnet OBJECTS - DATA (Read Only)					
Name	ID	Property	Units	Description		
		1	Data—Type Ana	log Input		
Al0 (Comp1_Current)	AI0	Present Value	Amps	Stage1 compressor current draw (Al0) - requires accessory		
Al1 (Comp2_Current)	AI1	Present Value	User	User defined (0-5VDC or 4-20mA)		
AI_2	Al2	Present Value	User	User defined (0-5VDC or 4-20mA)		
AI_3	AI3	Present Value	User	User defined (0-5VDC or 4-20mA)		
AI 4 (CTS)	Al4	Present Value	User	User defined (0-5VDC or 4-20mA)		
AI_5 (HTS)	AI5	Present Value	User	User defined (0-5VDC or 4-20mA)		
LPS1	Al6	Present Value	PSIG (kPa)	Low pressure value (suction pressure)		
HPS1	AI7	Present Value	PSIG (kPa)	High pressure value (discharge pressure)		
EVAP1	Al8	Present Value	degF (degC)	Evaporating Temperature		
COND1	Al9	Setpoint Value	degF (degC)	Condensing Temperature		
Suction Line 1	AI10	Present Value	degF (degC)	Suction line temperature		
Superheat 1	AI11	Setpoint Value	degF (degC)	Superheat		
EEV1 Position	AI12	Present Value	%	EEV position (% open)		
LPS2	AI13	Present Value	PSIG (kPa)	N/A		
HPS2	AI14	Present Value	PSIG (kPa)	N/A		
EVAP2	AI15	Present Value	degF (degC)	N/A		
COND2	AI16	Setpoint Value	degF (degC)	N/A		
Suction Line 2	AI17	Present Value	deaF (deaC)	N/A		
Superheat 2	AI18	Setpoint Value	degF (degC)	N/A		
EEV2 Position	AI19	Present Value	%	N/A		
Outside Ambient	AI20	Present Value	degF (degC)	Outdoor Ambient temperature - requires accessory		
O IN	Al21	Present Value	degF (degC)	Outdoor IN temperature		
	AI22	Present Value	deaF (deaC)	Outdoor OUT temperature		
	AI23	Present Value	degF (degC)	Indoor IN temperature		
 1 OUT	AI24	Present Value	degF (degC)	Indoor OUT temperature		
			Data Type—Ana	log Value		
PWM_IN	AV0	Present Value	%	PWM input (from external source)		
PWM1 (OD Fan)	AV1	Present Value	%	PWM output value (spare)		
PWM2	AV2	Present Value	%	PWM output value (spare)		
PWM3 (OV2)	AV3	Present Value	%	OV2 - PWM or 0-10VDC for Outdoor Loop water valve		
PWM4 (IV2)	AV4	Present Value	%	IV2 - PWM or 0-10VDC for Indoor Loop water valve		
Operation Mode	AV5	Present Value	N/A	Unit operation mode-refer to Operation Mode Table		
			Data Type—Bina	ry Output		
STAGE1	BO0	Present Value	N/A	Compressor contactor		
STAGE2	BO1	Present Value	N/A	Compressor stage 2 solenoid		
ICR (Indoor Circ)	BO2	Present Value	N/A	Indoor circulator control		
DO0 (OV1)	BO3	Present Value	N/A	NOT APPLICABLE		
DO1 (IV1))	BO4	Present Value	N/A	IV1 (for 24VAC Indoor Loop water valve)		
DO2 (HYD_AUX)	BO5	Present Value	N/A	Hydronic Auxiliary		
DO3 (AUX_ONLY)	BO6	Present Value	N/A	Hydronic Auxiliary Only (without compressor)		
PHS1	BO7	Present Value	N/A	Dry contact lockout pin for Stage 1		
PHS2	BO8	Present Value	N/A	Dry contact lockout pin for Stage 2		
	I	1	Data Type—Bina	ary Value		
CONTROLS (LOC/REM)	BV9	Present Value	N/A	Control Indicator, 0 = Local, 1 = Remote (BACnet)		
Outdoor Flow	BV10	Present Value	N/A	Outdoor loop water valve		
Indoor Flow	BV11	Present Value	N/A	Indoor Loop flow switch		
Phase Monitor1	BV12	Present Value	N/A	Phase Monitor Stage 1		
Phase Monitor2	BV13	Present Value	N/A	N/A		
Comp Monitor1	BV14	Present Value	N/A	N/A		
Comp Monitor2	BV15	Present Value	N/A	N/A		
Note: available objects ma	v he sul	biect to change wit	hout prior notice			

Name Data Type DD Description A010 (Comp1 Current) Analog Input A10 Stage 1 Status alarm (Start / Stop Failure) - requires accessory A11 (Comp2 Current) Analog Input A11 N/A LPS1 Analog Input A11 N/A LPS2 Analog Input A13 N/A LPS2 Analog Input A13 N/A HPS1 Analog Input A14 N/A Outdoor Flow Binary Value BV10 Outdoor loop atter valve Indoor Flow Binary Value BV11 Indoor loop atter valve Indoor Flow Binary Value BV12 Phase Monitor1 Binary Value BV13 Comp Monitor1 Binary Value BV14 N/A Comp Monitor12 Binary Value BV15 N/A Phase Monitor12 Binary Value BV16 N/A Comp Monitor12 Binary Value BV15 N/A Phase Monitor12	TABLE 13 - BACnet OBJECTS - ALARM Descriptions (Read Only)						
Ailo (Comp1 Current) Analog Input Ali N/A Ail (Comp2 Current) Analog Input Ali N/A LPS1 Analog Input Ali N/A LPS1 Analog Input Ali N/A LPS2 Analog Input Ali N/A HPS1 Analog Input Ali N/A HPS2 Analog Input Ali N/A HPS2 Analog Input Ali N/A HPS2 Analog Input Ali N/A UPS2 Analog Input Ali N/A UPS2 Analog Input Ali N/A Outdoor Flow Binary Value BV13 N/A Comp Monitor1 Binary Value BV13 N/A Comp Monitor2 Binary Value BV15 N/A Preamanet Alarms 1 AV6 - - Bit description is given below. (Present Value) 0 1 Master permanent alarm (soction pressure) 1 3 Low pressure heating mode alarm (suction pressure) 2 5 Low pressure heating mode alarm (disch	Name	Data Type	ID		Description		
Al1 (Comp2 Current) Analog Input Ai IVA LPS1 Analog Input Ai Low pressure alarm LPS2 Analog Input Ai N/A HPS1 Analog Input Aii N/A Outdoor Flow Binary Value BV10 Outdoor loop water valve Indoor Flow Binary Value BV10 Outdoor loop water valve Indoor Flow Binary Value BV10 N/A Comp Monitor1 Binary Value BV10 N/A Comp Monitor2 Binary Value BV11 N/A Comp Monitor2 Binary Value BV11 N/A Premanent Alarms1 AV6 · · Bit description is given below. (Present Value) AV6 · · Bit description is given below. (Present Value) AV6 · · Bit description is given below. (Present Value) AV6 · Bit description is given below. (Present Value) AV6 · Bit description is given below. (Present Value) AV6 · Bit description is given below. (Present Value) AV6 · Bit description is given below. (Present Value) AV7 10 S S <td>Al0 (Comp1 Current)</td> <td>Analog Input</td> <td>Al0</td> <td>Stage 1 Sta</td> <td>tus alarm (Start / Stop Failure) - requires accessory</td>	Al0 (Comp1 Current)	Analog Input	Al0	Stage 1 Sta	tus alarm (Start / Stop Failure) - requires accessory		
LPS1Analog InputA/ALow pressure atamHPS1Analog InputA/IHigh pressure atamLPS2Analog InputA/IN/ALPS2Analog InputA/IN/AOutdoor FlowBinary ValueBV10Outdoor loop flow alarm - requires accessoryPhase Monitor1Binary ValueBV12Nace Monitor1Phase Monitor2Binary ValueBV14N/AComp Monitor1Binary ValueBV14N/AComp Monitor1Binary ValueBV14N/AComp Monitor2Binary ValueBV14N/AComp Monitor1Binary ValueBV14N/AComp Monitor2Binary ValueBV14N/APresser Monitor3Binary ValueBV14N/AComp Monitor4Binary ValueBV14N/AComp Monitor3Binary ValueBV14N/APresser ValueMAD(Present Value)G1Mater permanent alarm (occurs when any alarm occurs)(Present Value)GSS(Present Value)GSS(Present Value)GSS(Present Value)AVSS(Present Value)AVSS(Present Value)AVSS(Present Value)AVSS(Present Value)AVSS(Present Value)AVSS(Present Value)AVSS(Present Value) <td>AI1 (Comp2 Current)</td> <td>Analog Input</td> <td>Al1</td> <td>N/A</td> <td></td>	AI1 (Comp2 Current)	Analog Input	Al1	N/A			
HPS1Analog inputA7High pressure alarmLPS2Analog inputA14NAHPS2Analog inputB14NAOutdoor FlowBanay ValueBV1Outdoor FlowBanay ValueBV1Phase MonitoriBinary ValueBV1Phase MonitoriBinary ValueBV1Phase MonitoriBinary ValueBV1NAComp MonitoriBinary ValueBV1NAComp MonitoriBinary ValueBV1NAComp MonitoriBinary ValueBV1NAPermanet Alarm 1AV6NState state st	LPS1	Analog Input	Al6	Low pressu	re alarm		
LPS2 Analog Input Al13 N/A HPS2 Analog Input Al14 N/A Outdoor Flow Binary Value BV10 Outdoor loop water valve Indoor Flow Binary Value BV11 Indoor loop flow alarm - requires accessory Phase Monitor1 Binary Value BV13 N/A Comp Monitor2 Binary Value BV14 N/A Comp Monitor1 Binary Value BV15 N/A Mame ID BIT # VALUE* Description Permanent Alarms1 AV6 - Bit description is given below. (Present Value) 1 3 Low pressure heating mode alarm (suction pressure) 1 3 Low pressure heating mode alarm (discharge pressure) 1 3 Low pressure heating mode alarm (discharge pressure) 1 3 Low pressure heating mode alarm (discharge pressure) 1 3 Low pressure heating mode alarm (discharge pressure) 1 14 16,365 Phase monitor alarm - requires accessory 1 14	HPS1	Analog Input	AI7	High pressu	ire alarm		
HPS2 Analog Input Al14 N/A Outdoor Flow Binary Value BV10 Outdoor loop water valve Indoor Flow Binary Value BV11 Indoor loop flow alarm - requires accessory Phase Monitor1 Binary Value BV13 N/A Comp Monitor1 Binary Value BV14 N/A Comp Monitor1 Binary Value BV14 N/A Comp Monitor2 Binary Value BV15 N/A Comp Monitor1 Binary Value BV15 N/A Comp Monitor2 Binary Value BV14 N/A Comp Monitor1 Binary Value BV15 N/A Vice Binary Value BV14 N/A Comp Monitor2 Binary Value BV15 N/A Comp Monitor1 Binary Value BV14 N/A Comp Monitor2 BV14 N/A Description Permanent Alarms1 AV6 - Bit description is given below. (Present Value) 1 1 Mot pressure beating mode alarm (suction pressu	LPS2	Analog Input	AI13	N/A			
Outdoor Flow Binary Value BV10 Outdoor loop flow alarm - requires accessory Phase Monitor1 Binary Value BV11 Phase Monitora Binary Value BV12 Phase Monitor1 Binary Value BV14 N/A	HPS2	Analog Input	AI14	N/A			
Indoor Flow Binary Value BV11 Indoor loop flow alarm - requires accessory Phase Monitor1 Binary Value BV12 Phase Monitor alarm - requires accessory Comp Monitor1 Binary Value BV13 N/A Comp Monitor1 Binary Value BV15 N/A Comp Monitor1 Binary Value BV15 N/A Comp Monitor2 Binary Value BV15 N/A Comp Monitor1 Binary Value BV15 N/A Comp Monitor2 Binary Value BV15 N/A Permanent Alarms 1 AV6 - Bit description is given below. (Present Value) 0 1 Master permanent alarm (occurs when any alarm occurs) (Present Value) 0 1 Master permanent alarm (occurs when any alarm occurs) (Present Value) 1 3 Low pressure cooling mode alarm (suction pressure) 1 3 Low pressure cooling mode alarm (discharge pressure) 1 1 129 Compressor monitor alarm - N/A 1 1 163 204/00 loop water valve <td>Outdoor Flow</td> <td>Binary Value</td> <td>BV10</td> <td>Outdoor loo</td> <td>p water valve</td>	Outdoor Flow	Binary Value	BV10	Outdoor loo	p water valve		
Phase Monitor1 Binary Value BV12 Phase Monitor alarm - requires accessory Comp Monitor2 Binary Value BV14 N/A Comp Monitor2 Binary Value BV14 N/A Comp Monitor2 Binary Value BV16 N/A Comp Monitor2 Binary Value BV16 N/A Comp Monitor2 Binary Value BV16 N/A Permanent Alarms1 AV6 - Bit description is given below. (Present Value) 0 1 Master permanent alarm (occurs when any alarm occurs) [Present Value] 0 1 Master permanent alarm (suction pressure) [1 3 Low pressure heating mode alarm (suction pressure) [2 5 Low pressure cooling mode alarm (discharge pressure) [3 9 High pressure cooling mode alarm (discharge pressure) [4 17 High pressure cooling mode alarm (discharge pressure) [4 16 165 Phase monitor alarm - requires accessory [7 129 Compressor monitor alarm - N/A [8 22.7	Indoor Flow	Binary Value	BV11	Indoor loop	flow alarm - requires accessory		
Phase Monitor2 Binary Value BV13 N/A Comp Monitor1 Binary Value BV14 N/A Comp Monitor2 Binary Value BV15 N/A Comp Monitor2 Binary Value BV15 N/A Mame ID BIT # VALUE* Description Permanent Alarms1 AV6 - Bit description is given below. (Present Value) 0 1 Master permanent alarm (occurs when any alarm occurs) I 3 Low pressure cooling mode alarm (suction pressure) I 3 9 High pressure cooling mode alarm (discharge pressure) I 4 17 High pressure cooling mode alarm (discharge pressure) I 4 17 High pressure cooling mode alarm (discharge pressure) I 16 65 Phase monitor alarm - requires accessory I 18 257 Status alarm I 16 165 Outdoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - N/A I <td< td=""><td>Phase Monitor1</td><td>Binary Value</td><td>BV12</td><td>Phase Moni</td><td>tor alarm - requires accessory</td></td<>	Phase Monitor1	Binary Value	BV12	Phase Moni	tor alarm - requires accessory		
Comp Monitor1 Binary Value BV14 N/A Comp Monitor2 Binary Value BV15 N/A Name ID BIT # VALUE* Description Permanent Alarms1 AV6 - Bit description is given below. (Present Value) 0 1 3 Low pressure heating mode alarm (suction pressure) 2 5 Low pressure cooling mode alarm (suction pressure) 2 3 9 High pressure cooling mode alarm (suction pressure) 2 4 17 High pressure cooling mode alarm (discharge pressure) 5 33 Loss of charge alarm 6 65 Phase monitor alarm - requires accessory 7 129 Compressor monitor alarm - N/A 8 257 Status alarm 9 Hids pressure cooling mode alarm - N/A 9 15* 32,769 Indoor loop flow alarm - requires accessory) 9 2 2 2 2 9 2 2 2 3 9 2	Phase Monitor2	Binary Value	BV13	N/A			
Comp Monitor2 Binary Value BV15 N/A Name ID BIT # VALUE* Description Permanent Alarms AV6 - Bit description is given below. (Present Value) 0 1 Master permanent alarm (occurs when any alarm occurs) Image: Comp And Comp	Comp Monitor1	Binary Value	BV14	N/A			
Name ID BIT # VALUE* Description Permanent Alarms 1 AV6 - - Bit description is given below. (Present Value) 0 1 Master permanent alarm (occurs when any alarm occurs) 1 3 Low pressure heating mode alarm (suction pressure) - 2 5 Low pressure cooling mode alarm (suction pressure) - 3 9 High pressure cooling mode alarm (discharge pressure) - 4 17 High pressure cooling mode alarm (discharge pressure) - 5 33 Loss of charge alarm - - 6 65 Phase monitor alarm - requires accessory - 7 129 Compressor monitor alarm - N/A - 8 257 Status alarm - 16* 32,769 Indoor loop flow alarm - requires accessory) - Permanent Alarms 2 AV7 - N/A - (Present Value) I I I I I I I I	Comp Monitor2	Binary Value	BV15	N/A			
NameIDBIT #VALUE*DescriptionPermanent Alarms 1AV6Bit description is given below.(Present Value)01Master permanent alarm (occurs when any alarm occurs)13Low pressure heating mode alarm (suction pressure)25Low pressure heating mode alarm (suction pressure)139High pressure cooling mode alarm (discharge pressure)25Low pressure cooling mode alarm (discharge pressure)139High pressure cooling mode alarm (discharge pressure)2533Loss of charge alarm1665Phase monitor alarm - requires accessory11416,385Outdoor loop water valve115*32,769Indoor loop flow alarm - requires accessory)Permanent Alarms 2AV71111111111111111111111111111220utdoor loop water valve1111111111111111111111111111111111111 <t< td=""><td></td><td></td><td></td><td>•</td><td></td></t<>				•			
Permanent Alarms 1 AV6 - Bit description is given below. (Present Value) 0 1 Master permanent alarm (occurs when any alarm occurs) Image: Ima	Name	ID	BIT #	VALUE*	Description		
Present Value) 0 1 Master permanent alarm (occurs when any alarm occurs) 1 3 Low pressure heating mode alarm (suction pressure) 2 5 Low pressure cooling mode alarm (suction pressure) 3 9 High pressure cooling mode alarm (suction pressure) 4 17 High pressure cooling mode alarm (discharge pressure) 5 33 Loss of charge alarm 6 65 Phase monitor alarm - requires accessory 7 129 Compressor monitor alarm - N/A 8 257 Status alarm 14 16,385 Outdoor loop water valve 15* 32,769 Indoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - N/A (Present Value) - N/A - 1 1 1 1 1 1 1 1 - - (Present Value) - - N/A - 1 1 1 - - 1 1	Permanent Alarms 1	AV6	-	-	Bit description is given below.		
1 3 Low pressure heating mode alarm (suction pressure) 2 5 Low pressure cooling mode alarm (suction pressure) 3 9 High pressure heating mode alarm (discharge pressure) 4 17 High pressure cooling mode alarm (discharge pressure) 5 33 Loss of charge alarm 6 65 Phase monitor alarm - requires accessory 7 129 Compressor monitor alarm - N/A 8 257 Status alarm 14 16,385 Outdoor loop water valve 15* 32,769 Indoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - N/A (Present Value) - N/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>(Present Value)</td> <td></td> <td>0</td> <td>1</td> <td>Master permanent alarm (occurs when any alarm occurs)</td>	(Present Value)		0	1	Master permanent alarm (occurs when any alarm occurs)		
2 5 Low pressure cooling mode alarm (suction pressure) 3 9 High pressure heating mode alarm (discharge pressure) 4 17 High pressure cooling mode alarm (discharge pressure) 5 33 Loss of charge alarm 6 65 Phase monitor alarm - requires accessory 7 129 Compressor monitor alarm - N/A 8 257 Status alarm 14 16,385 Outdoor loop water valve 15* 32,769 Indoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - N/A [Present Value] - N/A [Intersection of the section			1	3	Low pressure heating mode alarm (suction pressure)		
3 9 High pressure heating mode alarm (discharge pressure) 4 17 High pressure cooling mode alarm (discharge pressure) 5 33 Loss of charge alarm 6 65 Phase monitor alarm - requires accessory 7 129 Compressor monitor alarm - N/A 8 257 Status alarm 14 16,385 Outdoor loop water valve 15* 32,769 Indoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - N/A (Present Value) - N/A - 1 - N/A - 1 - - N/A 1 - - N/A			2	5	Low pressure cooling mode alarm (suction pressure)		
4 17 High pressure cooling mode alarm (discharge pressure) 5 33 Loss of charge alarm 6 65 Phase monitor alarm - requires accessory 7 129 Compressor monitor alarm - N/A 8 257 Status alarm 14 16,385 Outdoor loop water valve 15* 32,769 Indoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - N/A (Present Value) - N/A - 14 16,385 Outdoor loop flow alarm - requires accessory) - Permanent Alarms 2 AV7 - N/A (Present Value) - N/A - 14 16 - - N/A 15* 32,769 Indoor loop flow alarm - requires accessory) - (Present Value) - N/A - - (Present Value) - N/A - - 10 1 - - - 11 1 - - - 11 1			3	9	High pressure heating mode alarm (discharge pressure)		
5 33 Loss of charge alarm 6 65 Phase monitor alarm - requires accessory 7 129 Compressor monitor alarm - N/A 8 257 Status alarm 14 16,385 Outdoor loop water valve 15* 32,769 Indoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - - (Present Value) - N/A 1 - N/A 1 - - 1 - N/A 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 -			4	17	High pressure cooling mode alarm (discharge pressure)		
6 65 Phase monitor alarm - requires accessory 7 129 Compressor monitor alarm - N/A 8 257 Status alarm 14 16,385 Outdoor loop water valve 15* 32,769 Indoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - - (Present Value) - N/A 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - -			5	33	Loss of charge alarm		
Image: style interval inte			6	65	Phase monitor alarm - requires accessory		
8 257 Status alarm 14 16,385 Outdoor loop water valve 15* 32,769 Indoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - - N/A (Present Value) 1 1 1 1 1 (Present Value) 1 1 1 1 1 1 1 1 1 1 1 1 1			7	129	Compressor monitor alarm - N/A		
Index Index Outdoor loop water valve Index 15* 32,769 Indeor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - N/A (Present Value) Image: Construction of the state of			8	257	Status alarm		
Nder 15* 32,769 Indoor loop flow alarm - requires accessory) Permanent Alarms 2 AV7 - - N/A (Present Value) - - N/A Image: Construction of the state			14	16,385	16,385 Outdoor loop water valve		
Permanent Alarms 2 AV7 - N/A (Present Value) Image: Ima			15*	32,769	Indoor loop flow alarm - requires accessory)		
(Present Value) Image: Construction of the second seco	Permanent Alarms 2	AV7	-	-	N/A		
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).	(Present Value)						
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value).							
	Note: Permanent Alarn	n objects are typ	e Analo	g Value but v	alues are bit coded and may be decoded as such (integer value).		

Note: Objects may be subject to change without prior notice.

Name	Data Type	ID		Description
Al4 (Cold Tank)	Analog Input	AI0	N/A	
AI5 (Hot Tank)	Analog Input	AI1	N/A	
LPS1	Analog Input	Al6	Low pressure se	ensor faulty or disconnected
HPS1	Analog Input	AI7	High pressure s	ensor faulty or disconnected
LPS2	Analog Input	AI13	N/A	
HPS2	Analog Input	AI14	N/A	
Suction Line1	Analog Input	AI10	Suction line 1 te	emperature sensor faulty or disconnected.
Suction Line2	Analog Input	AI17	N/A	
Outside Ambient	Analog Input	AI20	Outside tempera	ature sensor faulty or disconnected - requires accessory
O_IN	Analog Input	Al21	Outdoor IN tem	perature sensor faulty or disconnected.
O_OUT	Analog Input	AI22	Outdoor OUT te	emperature sensor faulty or disconnected.
I_IN	Analog Input	AI23	Indoor IN tempe	erature sensor faulty or disconnected.
I_OUT	Analog Input	Al24	Indoor OUT terr	perature sensor faulty or disconnected.
Name	ID	BIT #	Value *	Description
Board Faults	AV8	-	-	Bit description is given below.
		0	1	Digital inputs
		1	2	Digital outputs
		2	4	PWM outputs
		3	8	Analog to digital conversion
		4	16	Real time clock
		5	32	EEPROM memory
		6	64	Menu buttons
		7	128	LCD Display
Sensor Faults	AV9	-	-	Indicates sensor failures. Bit description is given below.
		0	1	Suction line 1 temperature
		1	2	N/A
		2	4	Outdoor Ambient temperature (ACCESSORY)
		3	8	Calibration temperature
		4	16	Indoor IN temperature
		5	32	Indoor OUT temperature
		6	64	Outdoor IN temperature
		7	128	Outdoor OUT temperature
		8	256	N/A
		9	512	N/A
]	J		1 · · · · ·

Startup Procedure

The EMW-Series Two-Stage R410a Startup Record located in this manual is used in conjunction with this startup procedure to provide a detailed record of the installation. A completed copy should be left on site, a copy kept on file by the installer and a copy should be sent to Maritime Geothermal Ltd.

Check the boxes or fill in the data as each step is completed. For data boxes, circle the appropriate units.

Pre-Start Inspection

Indoor and Zone Loops (Hydronic):

- 1. Verify that all shutoff valves inside the unit are fully open.
- 2. Verify that the entire system has been flooded and all the air has been purged as much as possible. Further purging may be required after the system has been operating for a while.
- 3. Verify that the loop contains the proper mix of antifreeze (if used) for the intended application. If applicable, record the type of antifreeze and the mixture value on the startup sheet, circle % Vol. or % Weight.
- 4. Record the static loop pressure on the startup sheet. The value must be above 12PSIG. The electric heat will not function if the pressure is below this value.

Outdoor Loop (Ground Loop):

- 1. Verify that all shutoff valves are fully open and there are no restrictions in the piping from the heat pump to the ground loop, and that full flow is available to the heat pump.
- 2. Verify that the entire system has been flooded and all the air has been purged as much as possible. Further purging may be required after the system has been operating for a while.
- 3. Verify that the loop contains the proper mix of antifreeze for the intended application. Record the type of antifreeze and the mixture value on the startup sheet; circle % Vol. or % Weight.
- 4. Record the static loop pressure on the startup sheet.

Outdoor Loop (Ground Water):

- 1. Verify there are no leaks in the connections to the unit. Verify the water valve is installed and properly oriented in the return line.
- 2. Verify that there is flow control in the return line.

Domestic Hot Water (Desuperheater):

- 1. Verify that all shutoff values are fully open and there are no restrictions in the piping from the heat pump to the domestic hot water tank.
- 2. Verify that the entire system has been flooded and all the air has been purged as much as possible. Further purging may be required after the system has been operating for a while.
- **3.** Verify that the brown wire with the insulated terminal is disconnected in the electrical box. Refer to the schematic diagram for more information.

Electrical:

1. Ensure the power to the unit is off.

- 2. Verify all high voltage connections. Ensure that there are no stray wire strands, all connections are tight and the ground wire is connected tightly to the ground connector for the heat pump.
- 3. Record the fuse / circuit breaker size and wire gauge for the heat pump.
- 4. Verify that the control connections to the are properly connected and all control signals are off.
- 5. Turn both breakers off in the unit electrical box, so that the unit will not start when the power is turned on.
- 6. Verify that the circulator pumps are connected to the proper voltage terminals in the heat pump. Record the voltages of the circulator pumps.
- 7. Ensure all access panels except the one that provides access to the electrical box are in place.

Unit Startup

The unit is now ready to be started. The steps below outline the procedure for starting the unit and verifying proper operation of the unit. It is recommended that safety glasses be worn during the following procedures.

IMPORTANT NOTE: The unit is shipped with the SYSTEM DISABLED in order to prevent the unit from starting when the power is first turned on. Follow the instructions below in the Preparation section to enable the compressor.

The LCD display will automatically scroll through various data including low (suction) pressure, high (discharge) pressure, superheat, EEV position and water in/out temperatures.

Preparation:

- 1. Set all controls (including zone thermostats) to OFF. Turn power on to the heat pump. All LED's on the control board should turn on, the LCD display should say "MGT GEN2 VERx.xx" on line 1 and "Zeroing EEV's" on line 2. You should be able to hear the EEV moving (a clicking sound). Measure the following voltages on the compressor contactor and record them on the startup sheet: L1-L2, L2-L3, L1-L3.
- 3. Connect a USB cable between the USB connector on the board and a laptop with the PC App installed (recommended but optional).
- Select the desired Control Source HYD via the PC APP Configuration Page or via the LCD display Configuration Menu. Set the 4 water setpoints to a low value (e.g. 50°F) to prevent the compressor from coming on in heating mode.
- 5. Enable the system either with the PC App's Configuration Page System Enable/Disable button or via the LCD display.

Heating Mode:

- 1. Adjust the Setpoint Control settings via the PC App or LCD to activate stage 1 and stage 2 (or activate via BACnet if used). The EEV will begin to open and the compressor will start, as will the circulator pumps.
- Check the PC App or LCD Display. The suction and discharge pressures will vary based on the outdoor temperature and the indoor loop temperature, but they should be 90-110PSIG and 260-360PSIG respectively for a typical start-up.
- 3. Monitor the unit via the PC APP or LCD Display while the unit runs, and record the following after 10 minutes of run time: 1. Suction pressure
 - 2. Discharge pressure
 - 3. Four water line temperatures: Indoor IN, Indoor OUT, Outdoor IN, Outdoor OUT
 - 4. Outdoor Delta T (should be between 5-8°F, 3-4°C)
 - 5. Indoor Delta T (should be between 8-12°F, 4-6°C)
 - 6. Compressor L1(C) current (black wire, place meter between electrical box and compressor)
- 4. Adjust the control setpoints to the desired buffer tank temperature and let the unit run through a cycle.
- 5. Turn the power off to the unit. Connect the brown wire with the blue insulated terminal to the compressor contactor as shown on the electrical box diagram. Turn the DHW switch in the unit post on. Turn the power to the unit on.
- 6. Open a zone (or zones) and let the tank cool down until stage 2 is activated. Close the zone(s) again.
- 7. Verify the DHW IN and DHW OUT temperatures (if applicable) by hand (caution: pipes get hot). If the DHW OUT line does not become hotter than the DHW IN line the circulator is air locked. Bleed the air from the system and check the temperature differential again to ensure there is flow from the circulator.
- 8. Activate stage 3 by changing the stage 3 setpoints. Be sure the electric heat breaker inside the unit is ON. The yellow light on the side of the unit should turn on. Measure the L1 current draw with an clamp meter and record the value. It should be between 45 and 52A.

Cooling Mode:

- 1. Set a zone thermostat to cooling mode or otherwise activate cooling mode by sending an "O" signal to the heat pump. Adjust the setpoints via the PC App or LCD to activate stage 1 and stage 2.
- 2. Monitor the unit via the PC APP or LCD Display while the unit runs, and record the following after 10 minutes of run time:
 - 1. Suction pressure
 - 2. Discharge pressure
 - 3. Four water line temperatures: Indoor IN, Indoor OUT, Outdoor IN, Outdoor OUT
 - 4. Outdoor Delta T (should be between 8-12°F, 4-6°C)
 - 5. Indoor Delta T (should be between 5-8°F, 3-4°C)
- 3. Adjust the setpoints and let the unit run through a cycle.

Final Inspection:

- **1.** Turn the power off to the unit and remove all test equipment.
- 2. Install the electrical box cover and the access panel on the heat pump. Install the service port caps securely to prevent refrigerant loss.
- 3. Do a final check for leaks/spills and ensure the area is clean.
- 4. Turn the power on to the unit. Set the heat pump setpoints and zone thermostats to their final settings.

Startup Record:

1. Sign and date the Startup Record and have the homeowner sign as well. Leave the Startup Record with the homeowner, retain a copy for filing and send a copy to Maritime Geothermal Ltd. for warranty registration.

	Startup R	ecord - EMW-Series	Two-Stage	R410a					
Installation Site		Startup Date	Installer						
City			Company						
Province		Check boxes unless	Model						
Country		asked to record data. Circle data units.	Serial #						
Customer Name		Customer Phone #							
		PRE-START INSPE							
Indoor and Zone	All shut-off valve are open (fu	ll flow available)	-						
Loops (Hydronic)	Loop is full and purged of air	,							
(Hydronic)	Antifreeze type								
	Antifreeze concentration			% Vo	lume	% W	/eight		
	Loop static pressure			PSI	kPa				
Ground Loop	All shut-off valve are open (fu	ll flow available)							
System	Loop is full and purged of air								
	Antifreeze type								
	Antifreeze concentration			% Vo	lume	% W	/eight		
	Loop static pressure			PSI	kPa				
Ground Water	Water Valve installed in return	n line							
System	Flow control installed in return	n line							
Domestic Hot Water	All shut-off valves are open								
	Lines are full and purged								
	Desuperheater pump wire is o	lisconnected							
Electrical	High voltage connections are			1	-				
	Circuit breaker (or fuse) size a	A		Ga.			-		
	Circulator pump voltages (Outdoor 1, Outdoor 2)							V	
	Low voltage connections are correct and securely fastened								
		STARTUP DAT	Α				1		1
Preparation	Voltage across L1 and L2, L1	and L3, L2 and L3							VAC
	Green Light is ON								
Heating Mode	Suction Pressure / Discharge	Pressure					psig	kPa	
(10 minutes)	Outdoor In (Supply In), Outdo	or Out (Supply Out), and	l Delta T	In		Out		°F	°C
	Outdoor Flow	Outdoor Flow					L/s		
	Compressor L1 (black wire) c	urrent		A					
	Heating aquastat setpoint and	l discharge pressure at c	ycle end	°F	°C		psig	kPa	
	Domestic Hot Water functioning	ng?							1
	Yellow light is ON. Electric el	ement L1 current draw			Α				
Cooling Mode	Suction Pressure / Discharge	Pressure					psig	kPa	
(10 minutes) (HACW onlv)	Outdoor In (Supply In), Outdo	or Out (Supply Out), and	l Delta T	In		Out		°F	°C
	Cooling aquastat setpoint and	I suction pressure at cyc	e end	°F	°C		psig	kPa	
Final Aquastat	Heating S1 Setpoint, S1 Delta	a, S2 Setpoint, S2 Delta					°F	°C	
Settings	Cooling S1 Setpoint, S1 Delta	a, S2 Setpoint, S2 Delta					°F	°C	
Date:	Installer Signature:		Homeowne	r Signature:		I	1		I
A total of three of	copies are required: one for the	homeowner, one for the	installer, and	one to be sen	t to Ma	ritime	Geothe	rmal L	td.

GENERAL MAINTENANCE SCHEDULE					
ltem	Interval	Procedure			
Contactor	1 year	Inspect for pitted or burned points. Replace if necessary.			
Heat exchanger	As required*	Clean as per HEAT EXHCANGER FLUSING PROCEDURE below.			
*Generally not required for closed loop systems. Whenever system performance is reduced for open loop.					

COAXIAI	L HEAT EXCHANGER FLUSHING PROCEDURE - OPEN LOOP (WELL WATER)
STEP 1	Isolate the heat exchanger by closing the valves in the IN and OUT ports to the heat exchanger.
STEP 2	Blow out the heat exchanger into a clean 5 gallon bucket using compressed air.
STEP 3	If a purge cart is not available, use a 5 gallon plastic bucket, a circulator and some plastic piping to create a makeshift pump system. Connect a the inlet and outlet to the heat exchanger ports.*
STEP 4	Place 2 gallons of RYDLYME in the purge cart (or bucket). Circulate the fluid through the heat exchanger for at least 2 hours (3 recommended).
STEP 5	Disconnect the purge system dispose of the solution. RYDLYME is non-toxic and biodegradable and as such can be poured down a drain.
STEP 6	Connect fresh water and a drain to the heat exchanger ports and flush the exchanger for several minutes.
STEP 7	Return the plumbing to its original configuration and open the IN and OUT valves. Operate the system and check for improved performance.
*Depending	on the plumbing, there should be either unions or boiler drains for to access the heat exchanger.

COAXIA	L HEAT EXCHANGER FLUSHING PROCEDURE - GROUND LOOP
STEP 1	Isolate the heat exchanger by placing the pump module valves in the exchanger flushing position.
STEP 2	Connect a compressed air and a drain pipe to the pump module purge ports and blow the anti-freeze solu- tion into a clean 5 gallon bucket.
STEP 3	Connect a purge cart to the pump module purge ports.
STEP 4	Place 2 gallons of RYDLYME in the purge cart. Circulate the fluid through the heat exchanger for at least 2 hours (3 recommended).
STEP 5	Disconnect the purge cart and dispose of the solution. RYDLYME is non-toxic and biodegradable and as such can be poured down a drain. Clean the purge cart thoroughly.
STEP 6	Connect fresh water and a drain to the pump module purge ports and flush the exchanger for several minutes.
STEP 7	Blow the heat exchanger out with compressed air as per STEP 2 and dump the water down a drain.
STEP 8	Connect the purge cart to the pump module purge ports. Re-fill and purge the heat exchanger with as per standard procedures (the anti-freeze from STEP 2 can be re-used).
STEP 9	Disconnect the purge cart and set the pump module valves back to the original positions.
STEP 10	Operate the system and check for improved performance.
*Depending	on the plumbing, there should be either unions or boiler drains for to access the heat exchanger.

Troubleshooting Guide

The following steps are for troubleshooting the heat pump. If the problem is with the domestic hot water or the plenum heater, proceed to those sections at the end of the troubleshooting guide. Repair procedures and reference refrigeration circuit diagrams can be found later in this manual.

- **STEP 1:** Verify that the LCD Display is functioning . If it is not, proceed to POWER SUPPLY TROUBLE SHOOTING, otherwise proceed to STEP 2.
- **STEP 2:** Record the alarm shown on the LCD Display or use the PC APP Alarms page to determine the alarm type. Proceed to the ALARMS TROUBLESHOOTING section.
- **STEP 3:** If there are no alarms and STAGE1 is showing ON (LCD Display, PC APP or LED on control board) but the compressor is not operating, does not attempt to start, attempts to start but cannot, starts hard, or starts but does not sound normal, proceed to the COMPRESSOR TROUBLESHOOTING section.
- **STEP 4:** If the compressor starts and sounds normal, this means the compressor is most likely OK. Proceed to the OPERATION TROUBLESHOOTING section.
- **STEP 7:** If the heat pump appears to be operating properly but no hot or cold water is making it to the zones, proceed to the ZONE TROUBLESHOOTING section.
- **NOTE:** To speed up the troubleshooting process, if using the PC Application, click on SC Override to reduce the short cycle timer to 10 seconds.

POWER SUPPLY TROUBLESHOOTING			
Fault	Possible Cause	Verification	Recommended Action
No power to the heat pump	Disconnect switch open (if installed).	Verify disconnect switch is in the ON position.	Determine why the disconnect switch was opened; if all is OK close the switch.
	Fuse blown / breaker tripped.	At heat pump disconnect box, voltmeter shows 230VAC on the line side but not on the load side.	Reset breaker or replace fuse with proper size and type. (Time- delay type "D")
No heartbeat on control board	Transformer breaker tripped (or fuse blown for those without breaker).	Breaker on transformer is sticking out (or fuse looks burnt).	Push breaker back in. If it trips again locate cause of short circuit and correct (or replace fuse) .
	Faulty transformer.	Transformer breaker is not tripped (or fuse not blown), 230VAC is present across L1 and L3 of the compressor contactor but 24VAC is not present across 24VAC and COM of the control board.	Replace transformer.
	Faulty Control Board.	24VAC is present across 24VAC and COM of the control board.	Replace the control board.
No display on air thermostat	No power from transform- er.	See No Heartbeat on control board .	
	Faulty wiring between heat pump and thermo- stat.	24VAC is not present across R and C of the thermostat.	Correct the wiring.
	Faulty thermostat.	24VAC is present across R and C of the thermostat but thermostat has no display.	Replace thermostat .

ALARMS AND FAULTS TROUBLESHOOTING				
Alarm/Fault	Description	Recommended Action		
The data logging function ry of the unit operation cessory components.	on of the GEN2 Control Board is a very useful tool for troubleshooti up to and including the time at which the alarm(s) occurred. Note t	ng alarms. It provides a histo- hat some alarms require ac-		
Low Pressure	A low pressure alarm occurs when the suction pressure drops to or below the <i>Low Pressure Cutout</i> value. The low pressure is checked just before a compressor start; if it is OK the compres- sor will start, otherwise an alarm will occur. When the compres- sor starts, the low pressure alarm will be ignored for the number of seconds that <i>Low Pressure Ignore</i> is set to, after which the low pressure alarm will be re-enabled. This allows a dip in suction pressure below the cutout point during startup without causing a nuisance alarm.	Go to the Low Pressure sec- tion.		
High Pressure	A high pressure alarm occurs when the discharge pressure rises to or above the <i>High Pressure Cutout</i> value.	Go to the High Pressure sec- tion of the mode the unit was operating in at the time of the alarm.		
Compressor Status (accessory)	This alarm occurs when there is a current draw on the compres- sor but no call for the compressor to be on (welded contactor) or when there is a call for the compressor to be on but there is no compressor current draw (manual high pressure control is open or contactor failure). Requires current sensor accessory.	Check contactor if compres- sor is staying on when it should be off. Go to Com- pressor section if compressor is not on when it should be.		
Low Charge	This alarm occurs if the EEV has been at >99% for 20 minutes within first hour of a cycle.	Check system for refrigerant leak.		
Loss of Charge	This alarm occurs if both the low pressure and high pressure sensors are below 30 psig (207 kPa).	Check system for refrigerant leak.		

The following are hard	The following are hardware faults.			
Digital Inputs				
Digital Outputs	-	Cycle the nower a few times: if the		
Analog Inputs	A failure has occurred and the indicated section of the control board may no longer work properly.	fault persists replace the control		
MODBUS Comms		board.		
Real Time Clock	-			
Flash Memory	A failure has occurred and stored data may be corrupt.	It may be possible to correct this by using the menu item Tools—Reset to Factory Defaults . If this clears the fault then the system configuration will have to be set up again.		
Menu Buttons	A failure has occurred and the control board may no longer respond to menu button key presses.	Try turning off the power, disconnect- ing and reconnecting the cable be- tween the LCD Display board and the Control Board, and then turning the		
LCD Display	A failure has occurred and display may show erratic da- ta, no data or may not turn on at all.	power back on again. If this does no work then either the LDC Display board, the cable, or the driver sectio of the Control Board may be faulty.		
Temperature Sensors	The sensor is reading outside of the acceptable range. Check to ensure connector is on securely.	Replace the temperature sensor. If this does not rectify the problem replace the control board.		

COMPRESSOR TROUBLESHOOTING			
Fault	Possible Cause	Verification	Recommended Action
Compressor will not start	Faulty control board.	No 24vac output on STAGE1 when compressor should be operating.	Replace control board.
	Faulty run capacitor. (Single phase only)	Check value with capacitance meter. Should match label on capacitor. Compressor will hum while trying to start and then trip its overload.	Replace if faulty.
	Loose or faulty wiring.	Check all compressor wiring, includ- ing inside compressor electrical box.	Fix any loose connections. Re- place any damaged wires.
	Faulty compressor contactor.	Voltage on line side with contactor held closed, but no voltage on one or both terminals on the load side. Points pitted or burned. Or, 24VAC across coil but contactor will not engage.	Replace contactor.
	Thermal overload on compressor tripped.	Ohmmeter shows reading when placed across R and S terminals and infinity between C & R or C & S. A valid resistance reading is present again after the compressor has cooled down.	Proceed to Operation Trouble- shooting to determine the cause of the thermal overload trip.
	Burned out motor (open winding)	Remove wires from compressor. Ohmmeter shows infinite resistance between any two terminals. Note: Be sure compressor overload has had a chance to reset. If compressor is hot this may take several hours.	Replace the compressor.
	Burned out motor (shorted windings)	Remove wires from compressor. Resistance between any two termi- nals is below the specified value.	Replace the compressor.
	Motor shorted to ground.	Remove wires from compressor. Check for infinite resistance be- tween each terminal and ground.	If any terminal to ground is not infinite replace the compressor.
	Seized compressor due to locked or damaged mechanism.	Compressor attempts to start but trips its internal overload after a few seconds. (Run capacitor already verified)	Attempt to "rock" compressor free. If normal operation cannot be established, replace compressor.
Compressor starts hard	Start capacitor faulty. (Single phase only)	Check with capacitance meter. Check for black residue around blowout hole on top of capacitor.	Replace if faulty. Remove black residue in electrical box if any.
	Potential relay faulty. (Single phase only)	Replace with new one and verify compressor starts properly.	Replace if faulty.
	Compressor is "tight" due to damaged mechanism	Compressor attempts to start but trips its internal overload after a few seconds. Run capacitor has been verified already.	Attempt to "rock" compressor free. If normal operation cannot be es- tablished, replace compressor.
Compressor stage 2 will not activate	Faulty stage 2 plug at compressor	Verify if 24VAC is present across Y2 and C of the terminal strip.	Replace plug if signal is present. Check wiring if signal is not pre- sent.

OPERATION TROUBLESHOOTING -		HEATING MODE		
Fault	Possible Cause	Verification	Recommended Action	
High or low suc- tion or discharge pressure	Faulty sensor	Compare pressure sensor reading against a known reference such as a new refrigeration manifold set.	Check wiring, replace sensor. If problem persists, replace control board.	
High discharge pressure	Low or no flow in heat ex- changer to buffer tank circuit	Check that isolation flanges and ball valves are open. Verify 115VAC to pump. Check gauges for pressure drop. Check for high delta T with the PC APP. The EEV will be at a lower position than normal as well.	Ensure flow path is unrestricted. Replace pump if faulty.	
	Temperature setpoint(s) too high (if using BACnet control)	Use PC APP to verify that Indoor OUT does not exceed 120°F (49°C)	Reduce setpoint(s).	
	EEV stuck almost closed or partially blocked by for- eign object.	Manually adjusting the EEV does not affect the superheat or the suction pressure. Low superheat and dis- charge pressure.	Go to EEV troubleshooting sec- tion.	
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same temperature. If there is a temperature difference then it is plugged. Also causes low suc- tion pressure.	Replace filter-dryer.	
	Unit is overcharged (after servicing)	High subcooling, low Indoor Loop delta T.	Remove 1/2 lb of refrigerant at a time and verify that the discharge pressure reduces.	
Low suction pressure	Low or no Outdoor Loop flow	Delta T across the Outdoor Loop ports should be 5-7°F (3-4°C), or compare pressure drop to the tables for the unit.	Determine the cause of the flow restriction and correct it. Verify pumps are working and sized correctly for ground loop systems, and not air locked. Verify well pump and water valve is working for ground water sys- tems.	
	Outdoor Loop ELT too cold	Measure the entering liquid tempera- ture. Most likely caused by under- sized ground loop.	Increase the size of the ground loop.	
	Dirty or fouled Outdoor Loop coaxial heat ex- changer (typically for open loop, unlikely for ground loop)	Disconnect the water lines and check the inside of the pipes for scale de- posits.	Backflush the coaxial exchanger with a lime/calcium removing so- lution according to instructions in General Maintenance section.	
	Indoor OUT temperature too cold (on startup or if unit has been off for ex- tended period)	Ensure Indoor OUT temperature is above the low limit indicated in the Model Specific Information sec- tion.	Reduce flow temporarily until In- door OUT temperature has risen sufficiently.	
	TS1 temperature sensor not reading properly.	If the sensor is reading low it will cause the superheat to appear high, which causes the EEV to continually close.	Verify EEV position is low com- pared to normal. Check tempera- ture sensor, replace if necessary.	
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same temperature. If there is a temperature difference then it is plugged. Also causes low suc- tion pressure.	Replace filter-dryer.	

OPERATION TROUBLESHOOTING - HEATING MODE			
Fault	Possible Cause	Verification	Recommended Action
Low suction pressure (continued)	EEV stuck almost closed or partially blocked by for- eign object.	Manually adjusting the EEV does not affect the superheat or the suc- tion pressure. High superheat and discharge pressure.	Go to EEV troubleshooting sec- tion.
	Low refrigerant charge.	Superheat is high, EEV position is high.	Locate the leak and repair it. Spray Nine, a sniffer, and/or dye are common methods of locating a leak.
High suction pressure (may appear to not be pumping)	EEV stuck open.	Manually adjusting the EEV does not affect the superheat or the suc- tion pressure. Low super heat and discharge pressure.	Go to EEV troubleshooting sec- tion.
	Leaking reversing valve.	Reversing valve is the same temper- ature on both ends of body, com- mon suction line is warm, compres- sor is running hot.	Replace reversing valve.
	Faulty compressor, not pumping.	Pressures change only slightly from static values when compressor is started.	Replace compressor.
Compressor frosting up	See Low Suction Pressure in this section.		
EEV frosting up	EEV stuck almost closed or partially blocked by for- eign object.	Manually adjusting the EEV does not affect the superheat or the suc- tion pressure. Low superheat and discharge pressure.	Go to EEV troubleshooting sec- tion.
Random high pressure trip (may not occur while on site)	Faulty indoor circulator relay	Using the PC APP, manually turn the ICR on/off several times and ensure the circulator(s) start and stop.	Replace relay.
Random manual high pressure trip (may not oc- cur while on site)	Faulty compressor contac- tor.	Points pitted or burned. Contactor sometimes sticks causing the compressor to run when it should be off.	Replace contactor.

OPERATION TROUBLESHOOTING - COOLING MODE			
Fault	Possible Cause	Verification	Recommended Action
Heating instead of cooling	Zone thermostat intercon- nection or zone controller not set up properly.	Verify that there is 24VAC across O and C of the terminal strip when buffer tank should be cooled.	Correct setup.
	Faulty reversing valve so- lenoid coil.	Verify solenoid by removing it from the shaft while the unit is running. There should be a loud "whoosh" sound when it is removed.	Replace solenoid if faulty.
	Faulty reversing valve.	A click can be heard when the coil is energized but the unit continues to heat instead of cool.	Replace reversing valve.
High discharge pressure	Low or no Outdoor Loop flow	Delta T across the Outdoor Loop ports should be between 8-12°F (4-7°C), or compare pressure drop to the tables for the unit.	Determine the cause of the flow restriction and correct it. Verify pumps are working and sized correctly for ground loop sys- tems, and not air locked. Verify well pump and water valve is working for ground water systems.
	Outdoor Loop ELT too warm	Measure the entering liquid temper- ature. Most likely caused by under- sized ground loop.	Increase the size of the ground loop.
	Dirty or fouled Outdoor Loop coaxial heat ex- changer (typically for open loop, unlikely for ground loop)	Disconnect the water lines and check the inside of the pipes for scale deposits.	Backflush the coaxial exchanger with a lime/calcium removing solu- tion according to instructions in General Maintenance section.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same tempera- ture. If there is a temperature dif- ference then it is plugged. Also causes low suction pressure.	Replace filter-dryer.
	Unit is overcharged (after servicing)	High subcooling, low Indoor Loop delta T.	Remove 1/2 lb of refrigerant at a time and verify that the discharge pressure reduces.

OPERATION TROUBLESHOOTING - COOLING MODE			
Fault	Possible Cause	Verification	Recommended Action
High suction pressure (may appear to not be pumping)	EEV stuck open	Manually adjusting the EEV does not affect the superheat or the suc- tion pressure. Low superheat and discharge pressure.	Go to EEV troubleshooting section.
	Leaking reversing valve	Reversing valve is the same tem- perature on both ends of body, common suction line is warm, com- pressor is running hot.	Replace reversing valve.
	Faulty compressor, not pumping	Pressures change only slightly from static values when compressor is started.	Replace compressor.
Low suction pressure	Low or no flow in heat ex- changer to buffer tank circuit	Check that isolation flanges and ball valves are open. Verify 115VAC to pump. Check gauges for pressure drop. Check for high delta T with the PC APP. The EEV will be at a lower position than nor- mal as well.	Ensure flow path is unrestricted. Replace pump if faulty.
	Temperature setpoint(s) too low (if using BACnet control)	Use PC APP to verify that Indoor OUT is not less than the minimums listed in the Model Specific Infor- mation section.	Reduce setpoint(s).
	EEV stuck almost closed or partially blocked by for- eign object	Manually adjusting the EEV does not affect the superheat or the suc- tion pressure. Low superheat and discharge pressure.	Go to EEV troubleshooting section.
	TS1 temperature sensor not reading properly	If the sensor is reading low it will cause the superheat to appear high, which causes the EEV to con- tinually close.	Verify EEV position is low com- pared to normal. Check tempera- ture sensor, replace if necessary.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same tempera- ture. If there is a temperature dif- ference then it is plugged. Also causes low suction pressure.	Replace filter-dryer.
	Low refrigerant charge	Entering air temperature and air- flow are good but suction is low. Check static refrigeration pressure of unit for a low value.	Locate the leak and repair it. Spray Nine, a sniffer, and dye are common methods of locating a leak.
Compressor frosting up	See Low Suction Pressure in this section.		
EEV frosting up	EEV stuck almost closed or partially blocked by for- eign object.	Manually adjusting the EEV does not affect the superheat or the suc- tion pressure. Low superheat and discharge pressure.	Go to EEV troubleshooting section.
Random manual high pressure trip (may not oc- cur while on site)	Faulty compressor contac- tor.	Points pitted or burned. Contactor sometimes sticks causing the com- pressor to run when it should be off.	Replace contactor.

AUXILIARY ELI	AUXILIARY ELECTRIC HEAT TROUBLESHOOTING			
Fault	Possible Cause	Verification	Recommended Action	
No Electric Heat	Tripped or faulty electric heat breaker in heat pump electrical box	Reset if tripped. If not tripped verify that there is 230VAC across L1 and L3 of the electric heat contactor.	Determine why breaker was tripped. Replace breaker if faulty.	
	Insufficient Indoor Loop pressure	Verify Indoor Loop pressure. Must have at least 12PSIG to engage the safety pressure switch.	Increase Indoor Loop pressure.	
	Control board settings.	Check Stage 3 temperature and tim- er settings using PC App or LCD. Adjust values to test elements.	Correct settings.	
	Faulty electric heat contactor.	Voltage on line side with contactor held closed, but no voltage on one or both terminals on the load side. Points pitted or burned. Or, 24VAC across coil but contactor will not engage.	Replace contactor.	
	Faulty control board.	PC App or LCD show Stage 3 should be engaged, but no 24VAC output from board to engage backup heat contactor.	Replace control board.	
	Faulty elements.	With power off to the unit, measure the resistance across the T1 and T3 terminals of the electric heat contac- tor . Under 6 ohms = both elements good Infinity = both elements bad.	Replace the faulty elements.	
Low Electric Heat	One faulty element.	With power off to the unit, measure the resistance across the T1 and T3 terminals of electric heat contactor . 6 to 120hms = one element bad	Measure each element individual- ly to identify the faulty one, and replace it.	

ZONE TROUBL	ZONE TROUBLESHOOTING			
Fault	Possible Cause	Verification	Recommended Action	
No hot/cold water to individual zone	Faulty zone thermostat, wiring, zone valve, or zone valve head.	Other zones work, 24VAC is present across Z and C of the heat pump terminal strip but no hot/cold water reaches the zone.	Correct wiring. Or replace zone valve, zone valve head, or thermostat.	
No hot/cold water to any zones	Shut off valve closed in- side heat pump	Verify that all valves in the zone loop are open, including isolation valves at the zone circulator inside the unit.	Open any valves that are closed.	
	Faulty zone circulator contactor	24VAC is present across Z and C of the heat pump terminal strip but the contactor does not energize. Or, contactor is energized but 115VAC is not present across load terminal and ground.	Replace contactor.	
	Faulty zone circulator	115VAC is present across the load terminal of the zone circulator con- tactor and ground but circulator pump is not working.	Close isolation valves and re- move circulator pump head. Veri- fy operation of the impeller. Clean or replace if faulty.	

EEV TROUBLESHOOTING

If there is a refrigeration problem such as low charge, plugged filter-dryer, EEV stuck, or any other kind of restriction in the refrigeration system, the apparent EEV position will work its way towards 100% (full open). High superheat is also a symptom.

If an EEV is not working and is stuck partway open, the apparent EEV position will work its way either to 100% or to the 10% minimum.

If there is low suction and the EEV position is also low then the problem is generally not in the refrigeration system; check the water or air flow of the indoor or outdoor loop, whichever is currently being used as the source (evaporator).

To determine if an EEV is working, use the PC APP and put the system in manual override mode. Manually adjust the EEV position by at least 25% either up or down and check to see that the suction pressure, discharge pressure and superheat react to the change. If there is no reaction, then it is likely that the EEV is not working or is stuck. There are 3 possibilities: the control board is not working properly, the cable is faulty, or the EEV is faulty.

Set the EEV back to AUTO and then turn the heating or cooling demand off (but leave power on). Once the demand is off, if the EEV is working then the discharge pressure should remain significantly higher than the suction pressure, i.e. the system will not equalize (since EEV's are closed when there is no demand). If the system does equalize it is likely that the EEV is not working and is partially open. Manually set the EEV to 25% and wait for it to stop. Set the EEV to -1, this will cause it to overdrive. You should hear the valve clicking and then the clicking should change and get louder when the valve bottoms out.

If there is no clicking sound then either the control board is faulty, or the cable is faulty. The simplest method to check this is to connect a new EEV and cable to the control board and visually check the EEV so see if it opens and closes by setting the position o 0 and 100% If the new EEV works then the EEV in the unit needs to be replaced.

- 1) Connect a test EEV and test cable to the control board.
- 2) Set the EEV position to 0%.
- 3) Set the EEV position to 100% and then listen for clicking and watch to see if the pintle in the EEV moves open.
- 4) Set the EEV position to 0% and then listen for clicking and watch to see if the pintle in the EEV moves closed.
- 5) If the EEV does not move in one or both directions then the control board must be replaced.
- 6) If the test EEV moves in both directions then then either the cable or the EEV in the unit is faulty.
- 7) Disconnect the test EEV from the test cable and connect it to the cable in the unit.
- 8) Repeat steps 2 to 4.
- 9) If the test EEV moves in both directions then the EEV in the unit is faulty and must be replaced.
- 10) If the test EEV does not move in one or both directions then the cable must be replaced.

DOMESTIC HOT WATER (DESUPERHEATER) TROUBLE SHOOTING				
Fault	Possible Cause	Verification	Recommended Action	
Insufficient hot water (tank problem)	Thermostat on hot water tank set too low. Should be set at 120°F to 140°F.	Visually inspect the setting.	Adjust the setting.	
	Breaker tripped, or fuse blown in electrical supply to hot water tank	Check both line and load sides of fuses. If switch is open determine why (possible shorted element).	Correct problem, and replace blown fuse or reset breaker.	
	Reset button tripped on hot water tank.	Check voltage at elements with multimeter.	Push reset button.	
Insufficient hot water (heat pump	DHW switch is turned off	Inspect switch, located on heat pump cabinet post.	Turn switch on.	
problem)	Circulator pump seized or motor failed	Use an amprobe to measure current draw.	Replace if faulty.	
	Blockage or restriction in the water line or hot water heat exchanger	Check water flow and power to pump. Check water lines for obstructions.	Remove obstruction in water lines. Acid treat the domestic hot water coil.	
	Faulty DHW cutout (failed open)	Check contact operation. Should close at 120°F and open at 140°F.	Replace DHW cutout if faulty.	
	Heat pump not running enough hours to make sufficient hot water	Note the amount of time the heat pump runs in any given hour.	Temporarily turn up the tank thermostats until colder weather creates longer run cycles.	
Water is too hot.	Faulty DHW cutout (failed closed)	Check contact operation. Should close at 120°F and open at 140°F.	Replace DHW cutout if faulty.	
	Thermostat on hot water tank set too high. Should be set at 120°F to 140°F.	Visually inspect the setting.	Adjust the setting.	

Troubleshooting Tools

Digital Thermometer

PUMP D	OWN PROCEDURE
STEP 1	Place the unit in SERVICE mode via the PC App. This will open the EEV and solenoid valve.
STEP 2	Connect the refrigerant recovery unit to the service ports via a refrigeration charging manifold and to a re- covery tank as per the instructions in the recovery unit manual. If there was a compressor burn out, the re- frigerant cannot be reused and must be disposed of according to local codes.
STEP 3	All water coil heat exchangers must either have full flow or be completely drained of fluid before recovery begins. Failure to do so can freeze and rupture the heat exchanger, voiding its warranty. Note that this does not apply to double wall domestic hot water exchangers (desuperheater coils).
STEP 4	Ensure all hose connections are properly purged of air. Start the refrigerant recovery as per the instructions in the recovery unit manual.
STEP 5	Allow the recovery unit suction pressure to reach a vacuum. Once achieved, close the charging manifold valves. Shut down, purge and disconnect the recovery unit as per the instructions in its manual. Ensure the recovery tank valve is closed before disconnecting the hose to it.
STEP 6	Connect a nitrogen tank to the charging manifold and add nitrogen to the heat pump until a positive pres- sure of 5-10PSIG is reached. This prevents air from being sucked into the unit by the vacuum when the hoses are disconnected.
STEP 7	The heat pump is now ready for repairs. Always ensure nitrogen is flowing through the system during any brazing procedures to prevent oxidation inside the pipes. Maritime Geothermal Ltd. recommends replacing the liquid line filter-dryer any time the refrigeration system has been exposed to the atmosphere.

VACUUM	I AND CHARGING PROCEDURE
STEP 1	After completion of repairs and nitrogen pressure testing, the refrigeration circuit is ready for vacuuming.
STEP 2	Release the refrigerant circuit pressure and connect the vacuum pump to the charging manifold. Start the vacuum pump and open the charging manifold valves. Vacuum until the vacuum gauge remains at less than 500 microns for at least 1 minute with the vacuum pump valve closed.
STEP 3	Close the charging manifold valves then shut off and disconnect the vacuum pump. Place a refrigerant tank with the proper refrigerant on a scale and connect it to the charging manifold. Purge the hose to the tank.
STEP 4	Weigh in the appropriate amount of refrigerant through the low pressure (suction) service port. Refer to the label on the unit or the Refrigerant Charge table in the Model Specific Information section for the proper charge amount.
STEP 5	If the unit will not accept the entire charge, the remainder can be added through the low pressure service port after the unit has been restarted.

REPLAC	MENT PROCEDURE FOR A COMPRESSOR BURNOUT
STEP 1	Pump down the unit as per the Pump Down Procedure above. Discard the refrigerant according to local codes.
STEP 2	Replace the compressor. Replace the liquid line filter-dryer.
STEP 3	Vacuum the unit until it remains under 500 microns for several minutes with the vacuum pump valve closed.
STEP 4	Charge the unit with NEW REFRIGERANT and operate it for continuously for 2 hours. Pump down the unit and replace the filter-dryer. Vacuum the unit until it remains under 500 microns for several minutes with the vacuum pump valve closed.
STEP 5	Charge the unit (refrigerant can be re-used) and operate it for 2-3 days. Perform an acid test. If it fails, pump down the unit and replace the filter-dryer.
STEP 6	Charge the unit (refrigerant can be re-used) and operate it for 2 weeks. Perform an acid test. If it fails, pump down the unit and replace the filter-dryer.
STEP 7	Charge the unit a final time. Unit should now be clean and repeated future burn-outs can be avoided.

Model Specific Information

Table 15 - Shipping Information									
MODEL	WEIGHT	DIMENSIONS in (cm)							
WODEL	lb. (kg)	L	w	Н					
EMW-45	620 (281)	70 (178)	36 (91)	46 (117)					
EMW-55	640 (290)	70 (178)	36 (91)	46 (117)					
EMW-65	670 (304)	70 (178)	36 (91)	46 (117)					
EMW-75	700 (318)	70 (178)	36 (91)	46 (117)					
EMW-80	795 (360)	70 (178)	36 (91)	46 (117)					

Table 16 - Refrigerant Charge										
MODEL	lb	kg Refrigerant Oil Ty								
EMW-45	7.0	3.2	R410a	POE						
EMW-55	7.0	3.2	R410a	POE						
EMW-65	8.0	3.6	R410a	POE						
EMW-75	9.0	4.1	R410a	POE						
EMW-80	10.0	4.5	R410a	POE						

Oil capacity is marked on the compressor label.
Refrigerant charge is subject to revision; actual charge is indicated on the unit nameplate.

Table 17 - Outdoor Loop Flow Rates								
MODEL	gpm	L/s						
EMW-45	10	0.63						
EMW-55	12	0.76						
EMW-65	14	0.88						
EMW-75	16	1.01						
EMW-80	17	1.07						

Table 18 - Opera	Table 18 - Operating Temperature Limits										
Loop	Mode	Parameter	(°F)	(°C)	Note						
	Heating	Minimum ELT	23	-5	Adequate freeze protection (antifreeze) required.						
OUTDOOR	Heating	Maximum LLT	120	49							
(GROUND LOOP)	Cooling	Minimum ELT	32	0	Adequate freeze protection (antifreeze) required.						
	Cooling	Maximum LLT	120	49							
	Heating	Minimum ELT	39	4							
OUTDOOR	Tiedding	Maximum LLT	120	49							
(OPEN LOOP)	Cooling	Minimum ELT	39	4							
		Maximum LLT	120	49							
	Heating	Minimum EWT	60	15							
INDOOR	Tleating	Maximum LWT	120	49							
(ANTIFREEZE)	Cooling	Minimum LLT	32	0	Adequate freeze protection (antifreeze) required.						
	Cooling	Maximum EWT	80	27							
	Heating	Minimum EWT	60	15							
INDOOR	Tieaung	Maximum LWT	120	49							
(WATER)	Cooling	Minimum LWT	41	5							
	Cooming	Maximum EWT	80	27							

Table 19	: Outdoor I Pressure	₋oop Drops	OUTE (water	000R 50°F)	OUTE (15% meth	DOOR nanol 32°F)	OUTDOOR (35% prop. glycol 32°F)		
	gpm	L/s	psi	kPa	psi	kPa	psi	kPa	
	4	0.25	0.9	6.2	1.0	6.9	1.3	9.0	
	5	0.32	1.2	8.3	1.4	9.6	1.8	13	
	6	0.38	1.7	12	2.0	14	2.6	18	
	7	0.44	2.1	14	2.5	17	3.3	23	
	8	0.50	2.8	19	3.0	21	4.0	27	
EMW-	9	0.57	3.5	24	3.8	26	5.0	34	
45	10	0.63	4.0	28	4.7	32	6.2	43	
	11	0.69	4.6	32	5.5	38	7.2	50	
	12	0.76	5.5	38	6.6	45	8.7	60	
	13	0.82	6.2	43	7.4	51	9.7	67	
	14	0.88	7.0	48	8.6	59	11.3	78	
	15	0.95	8.2	57	9.5	65	12.5	86	
	6	0.38	1.2	8.3	1.3	9.0	1.7	12	
	7	0.44	1.6	11	1.6	11	2.1	14	
	8	0.50	1.9	13	2.1	14	2.8	19	
	9	0.57	2.4	17	2.4	17	3.2	22	
	10	0.63	2.9	20	3.1	21	4.1	28	
EIVIVV-	11	0.69	3.1	21	3.6	25	4.7	33	
55	12	0.76	3.7	26	4.4	30	5.8	40	
	13	0.82	4.3	30	5	34	6.6	45	
	14	0.88	5	34	5.7	39	7.5	52	
	15	0.95	5.8	40	6.4	44	8.4	58	
	16	1.01	6.3	43	7.1	49	9.3	64	

Pressure Drop Data

Table 19 (cont'd)	: Outdoor L Pressure	₋oop Drops	OUTD (water	OOR 50°F)	OUTE (15% meth	DOOR anol 32°F)	OUTDOOR (35% prop. glycol 32°F)		
	gpm	L/s	psi	kPa	psi	kPa	psi	kPa	
	6	0.38	1.2	8.3	1.3	9.0	1.7	12	
	7	0.44	1.5	10	1.8	12	2.4	16	
	8	0.50	1.9	13	2.2	15	2.9	20	
	9	0.57	2.3	16	2.7	19	3.6	24	
	10	0.63	2.6	18	3.3	23	4.3	30	
EIVIVV-	11	0.69	3.2	22	4	28	5.3	36	
05	12	0.76	3.9	27	4.6	32	6.0	42	
	13	0.82	4.4	30	5.2	36	6.8	47	
	14	0.88	5	34	5.8	40	7.6	53	
	15	0.95	5.7	39	6.5	45	8.5	59	
	16	1.01	6.5	45	7.3	50	9.6	66	
	6	0.38	0.7	4.8	0.9	6.2	1.2	8.2	
	7	0.44	0.9	6.2	1.0	6.9	1.3	9.0	
	8	0.50	1.3	9.0	1.3	9.0	1.7	12	
	9	0.57	1.6	11	1.6	11	2.1	14	
	10	0.63	1.9	13	2.1	14	2.8	19	
EMW-	11	0.69	2.3	16	2.4	17	3.2	22	
75	12	0.76	2.6	18	2.9	20	3.8	26	
	13	0.82	3.0	21	3.3	23	4.3	30	
	14	0.88	3.2	22	3.7	26	4.9	33	
	15	0.95	3.5	24	4.1	28	5.4	37	
	16	1.01	4.0	28	4.7	32	6.2	43	
	17	1.07	4.4	30	5.2	36	6.8	47	
	9	0.57	1.3	9.0	1.4	10	1.8	13	
	10	0.63	1.6	11	1.7	12	2.2	15	
	11	0.69	1.9	13	2.2	15	2.9	20	
	12	0.76	2.4	17	2.6	18	3.4	24	
EMW-	13	0.82	2.7	19	3.1	21	4.1	28	
80	14	0.88	3.1	21	3.5	24	4.6	32	
	15	0.95	3.3	23	3.8	26	5.0	34	
	16	1.01	3.6	25	4.1	28	5.4	37	
	17	1.07	4.1	28	4.6	32	6.0	42	
	18	1.14	4.5	31	4.9	34	6.4	44	

Standard Capacity Ratings

Table 2	0 - Stand	ard Capa	city Rati	ings - G	round Loc	p Heating	k		60Hz
EWT 104°F (40°C) * 15% NaCl by Weight Ground Loop Fluid STAGE 1 - ELT 41°F (5 STAGE 2 - ELT 32°F (0									'F (5°C) 'F (0°C)
Model	Liquid Flow Outdoor Odel (Outdoor & Indoor) Pressure Dro		Outdoor Input ssure Drop Mode Energy		Input Energy	Сара	СОРн		
	gpm	L/s	psi	kPa		Watts	Btu/hr	kW	W/W
45	10.0	0.63	4.5	21.1	Stage 1	1,760	19,200	5.6	3.2
		10.0 0.03	4.5	31.1	Stage 2	2,455	26,000	7.6	3.1
55	12.0	0.76	4.1	28.5	Stage 1	2,740	29,000	8.5	3.1
	12.0	0.76		20.5	Stage 2	3,270	34,600	10.7	3.1
65	14.0	0.99	63	42.7	Stage 1	3,120	34,100	10.0	3.2
65	14.0	0.00	0.5	43.7	Stage 2	4,025	42,600	12.5	3.1
75	16.0	1 01	4.0	22.0	Stage 1	3,765	41,100	12.0	3.2
75	10.0	1.01	4.3	55.0	Stage 2	4,630	49,000	14.4	3.1
80	17.0	1.07	4.5	31.0	Stage 1	5,860	58,000	17.0	2.9

Table 2	Table 21 - Standard Capacity Ratings - Ground Water Heating 60Hz										
EWT 104	EWT 104°F (40°C) ELT 50°F (10°C)										
Model	Liquio (Outdoor	l Flow & Indoor)	Outdoor Pressure Drop		Mode	Input Energy	Сара	acity	COP _H		
	gpm	L/s	psi	kPa		Watts	Btu/hr	kW	W/W		
45	10.0	0.63	2.0	27.0	Stage 1	1,855	22,800	6.7	3.6		
45	10.0	0.03	5.5	21.0	Stage 2	2,455	32,700	9.6	3.9		
55	12.0	0.76	36	24.9	Stage 1	2,475	32,100	9.4	3.8		
55	12.0	0.76	3.0	24.0	Stage 2	3,565	45,000	13.2	3.7		
65	14.0	0 00	5 1	24.0	Stage 1	3,200	39,300	11.5	3.6		
05	14.0	0.00	5.1	54.5	Stage 2	4,345	54,900	16.1	3.7		
75	16.0	1 01	4.6	24 7	Stage 1	3,785	47,800	14.0	3.7		
75	10.0	1.01	4.0	31.7	Stage 2	4,845	64,500	18.9	(10°C) COP _H W/W 3.6 3.9 3.8 3.7 3.6 3.7 3.7 3.9 3.7		
80	17.0	1.07	4.2	28.8	Stage 1	6,095	77,000	22.6	3.7		

Table 22 - Standard Capacity Ratings - Ground Loop Cooling*

Table 2	Cable 22 - Standard Capacity Ratings - Ground Loop Cooling* 60Hz									
EWT 53.6°F (12°C)* 15% NaCl by Weight Ground Loop FluidSTAGE 1 - ELT 68°F (20° STAGE 2 - ELT 77°F (25°								8°F (20°C) 7°F (25°C)		
Model	Liquid Flow (Outdoor & Indoo		Outo Pressu	door re Drop	Mode	Input Energy	Сара	city	COPc	EER
	gpm	L/s	psi	kPa		Watts	Btu/hr	kW	W/W	Btu/hr/W
45	10.0	0.63	26	24.9	Stage 1	1,205	23,000	6.7	5.6	19.1
45	10.0	0.05	5.0	24.5	Stage 2	2,125	31,000	9.1	4.3	14.6
55	12.0	0.76	3 /	23.4	Stage 1	1,615	31,500	9.2	5.7	19.5
55	12.0	0.70	5.5	25.4	Stage 2	2,685	40,300	11.8	4.4	15.0
65	14.0	0 00	4.0	33 0	Stage 1	1,975	39,100	11.5	5.8	19.8
65	14.0	0.00	4.9	33.9	Stage 2	3,305	49,600	14.5	4.4	15.0
75	16.0	1 01	12	20.4	Stage 1	2,535	45,600	13.4	5.3	18.0
75	10.0	1.01	4.3	29.4	Stage 2	3,750	55,900	16.4	4.4	14.9
80	17.0	1.07	4.4	30.1	Stage 1	4,460	66,000	19.3	4.3	14.8

Table 23 - Standard Capacity Ratings - Ground Water Cooling

60Hz

EWT 53.6	5°F (12°C)							EL	T 59°F (15°C)
Model	Liquid Flow (Outdoor & Indoor)		Outdoor Pressure Drop		Mode	Input Energy	Capacity		COPc	EER
	gpm	L/s	psi	kPa		Watts	Btu/hr	kW	W/W	Btu/hr/W
45	10.0	0.62	3.6	24.6	Stage 1	985	24,500	7.2	7.3	24.8
45 10.0	10.0	0.63		24.0	Stage 2	1,665	34,000	10.0	6.0	20.4
66	12.0	0.76	76 2.0	22.4	Stage 1	1,370	33,900	9.9	7.2	24.7
55	12.0	0.76	3.2	22.1	Stage 2	2,180	44,700	13.1	6.0	20.5
<u>CE</u>	11.0	0.00	E 0	25.7	Stage 1	1,755	41,300	12.1	6.9	23.5
65	14.0	0.00	5.2	35.7	Stage 2	2,710	54,800	16.1	5.9	20.2
75	16.0	1 01		20.6	Stage 1	2,120	49,800	14.6	6.9	23.5
75	16.0	1.01	4.4	30.0	Stage 2	3,105	62,400	18.3	5.9	20.1
80	17.0	1.07	3.9	26.8	Stage 1	3,725	73,000	21.4	5.7	19.6

EMW	EMW-45-HACW-P-1T R410a 60 Hz														
S	ource	Data	(Outd	loor Lo	op)	Pow	ver Co	nsump	tion		Sink E	Data (li	ndoor	Loop)
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	То	tal	Effective	COPh	EWT	Cond. Temp.	Flow	LWT	Delta T	Net Output
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	W/W	°F	°F	gpm	°F	°F	Btu/hr
°C	°C	L/s	°C	O°	Watts					С°	°C	L/s	°C	С°	Watts
25.0	15	10.0	21.7	3.3	15,693	2,299	10.7	2,421	2.87	104.0	112	10.0	108.8	4.8	23,734
-3.9	-9.4	0.631	-5.7	1.8	4,598					40.0	44.4	0.631	42.6	2.6	6,954
31.0	20	10.0	27.3	3.7	17,499	2,326	10.8	2,448	3.07	104.0	113	10.0	109.1	5.1	25,631
-0.6	-6.7	0.631	-2.6	2.0	5,127					40.0	45.0	0.631	42.9	2.9	7,510
37.0	25	10.0	32.9	4.1	19,590	2,321	10.8	2,443	3.32	104.0	113	10.0	109.5	5.5	27,705
2.8	-3.9	0.631	0.5	2.3	5,740					40.0	45.0	0.631	43.1	3.1	8,117
42.0	30	10.0	37.4	4.6	21,692	2,344	10.9	2,465	3.55	104.0	114	10.0	110.0	6.0	29,884
5.6	-1.1	0.631	3.0	2.5	6,356					40.0	45.6	0.631	43.3	3.3	8,756
47.0	35	10.0	42.1	4.9	23,472	2,325	10.9	2,437	3.80	104.0	114	10.0	110.3	6.3	31,595
8.3	1.7	0.631	5.6	2.7	6,877					40.0	45.6	0.631	43.5	3.5	9,257
52.0	40	10.0	46.6	5.4	25,502	2,346	11.0	2,457	4.02	104.0	115	10.0	110.7	6.7	33,696
11.1	4.4	0.631	8.1	3.0	7,472					40.0	46.1	0.631	43.7	3.7	9,873
58.0	45	10.0	52.2	5.8	27,469	2,346	10.9	2,457	4.25	104.0	115	10.0	111.1	7.1	35,662
14.4	7.2	0.631	11.2	3.2	8,048					40.0	46.1	0.631	44.0	4.0	10,449
64.0	50	10.0	57.8	6.2	29,629	2,367	11.0	2,478	4.48	104.0	116	10.0	111.6	7.6	37,894
17.8	10.0	0.631	14.3	3.5	8,681					40.0	46.7	0.631	44.2	4.2	11,103
						-							Compre	ssor: ZPS3	30K5E-PFV

Heating Mode (Full Load)

EMW-45-HACW-P-1T R410a 60														1 60 Hz	
S	Source	e Data	(Indo	oor Loo	op)	Pow	ver Co	nsump	tion		Sink D	ata (O	utdoo	or Loo	p)
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	Тс	otal	Effective	Effi- ciency	ELT	Cond. Temp.	Flow	LLT	Delta T	Rejection
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	EER	°F	°F	gpm	°F	°F	Btu/hr
°C	O°	L/s	°C	O°	Watts				COPc	°C	°C	L/s	С°	°C	Watts
53.6	38	10.0	46.5	7.1	35,366	1,376	6.2	1,496	6.93	47	65	10.0	55.4	8.4	40,062
12.0	3.1	0.631	8.1	3.9	10,362				23.6	8.3	18.3	0.631	13.0	4.7	11,738
53.6	38	10.0	46.6	7.0	34,860	1,444	6.5	1,564	6.53	52	70	10.0	60.4	8.4	39,787
12.0	3.3	0.631	8.1	3.9	10,214				22.3	11.1	21.1	0.631	15.8	4.7	11,657
53.6	39	10.0	46.7	6.9	34,355	1,519	6.8	1,639	6.14	57	75	10.0	65.3	8.3	39,539
12.0	3.6	0.631	8.2	3.8	10,066				21.0	13.9	23.9	0.631	18.5	4.6	11,585
53.6	39	10.0	46.9	6.7	33,375	1,618	7.2	1,738	5.63	62	80	10.0	70.2	8.2	38,898
12.0	3.9	0.631	8.3	3.7	9,779				19.2	16.7	26.7	0.631	21.2	4.5	11,397
53.6	40	10.0	47.1	6.5	32,427	1,737	7.6	1,859	5.11	66	85	10.0	74.1	8.1	38,354
12.0	4.2	0.631	8.4	3.6	9,501				17.4	18.9	29.4	0.631	23.4	4.5	11,238
53.6	40	10.0	47.2	6.4	31,903	1,840	8.1	1,962	4.76	71	90	10.0	79.0	8.0	38,182
12.0	4.4	0.631	8.5	3.5	9,347				16.3	21.7	32.2	0.631	26.1	4.5	11,187
53.6	41	10.0	47.3	6.3	31,354	1,953	8.6	2,075	4.43	75	95	10.0	83.0	8.0	38,019
12.0	4.7	0.631	8.5	3.5	9,187				15.1	23.9	35.0	0.631	28.3	4.4	11,139
53.6	41	10.0	47.4	6.2	30,774	2,076	9.1	2,198	4.10	80	100	10.0	88.0	8.0	37,859
12.0	5.0	0.631	8.6	3.4	9,017				14.0	26.7	37.8	0.631	31.1	4.4	11,093
						-							Compr	essor: ZP	S30K5E-PFV

EMW	EMW-55-HACW-P-1T R410a 60 Hz														
S	ource	Data	(Outd	oor Lo	op)	Pow	ver Co	nsump	tion		Sink D)ata (li	ndoor	Loop)
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	Тс	otal	Effective	COPh	EWT	Cond. Temp.	Flow	LWT	Delta T	Net Output
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	W/W	°F	°F	gpm	°F	°F	Btu/hr
°C	°C	L/s	°C	O°	Watts					С°	°C	L/s	°C	°C	Watts
25.0	15	12.0	21.4	3.6	20,563	3,128	15.8	3,264	2.82	104.0	115	12.0	109.2	5.2	31,456
-3.9	-9.4	0.757	-5.9	2.0	6,025					40.0	46.1	0.757	42.9	2.9	9,216
31.0	20	12.0	26.9	4.1	23,153	3,151	16.0	3,286	3.04	104.0	116	12.0	109.7	5.7	34,123
-0.6	-6.7	0.757	-2.8	2.3	6,784					40.0	46.7	0.757	43.2	3.2	9,998
37.0	25	12.0	32.5	4.5	25,909	3,185	15.9	3,320	3.26	104.0	116	12.0	110.2	6.2	36,994
2.8	-3.9	0.757	0.3	2.5	7,591					40.0	46.7	0.757	43.4	3.4	10,839
42.0	30	12.0	37.0	5.0	28,544	3,298	16.0	3,433	3.42	104.0	117	12.0	110.7	6.7	40,015
5.6	-1.1	0.757	2.8	2.8	8,363					40.0	47.2	0.757	43.7	3.7	11,724
47.0	35	12.0	41.5	5.5	31,313	3,413	16.0	3,532	3.58	104.0	117	12.0	111.2	7.2	43,156
8.3	1.7	0.757	5.3	3.1	9,175					40.0	47.2	0.757	44.0	4.0	12,644
52.0	40	12.0	45.9	6.1	34,509	3,447	16.1	3,567	3.82	104.0	118	12.0	111.8	7.8	46,468
11.1	4.4	0.757	7.7	3.4	10,111					40.0	47.8	0.757	44.3	4.3	13,615
58.0	45	12.0	51.3	6.7	37,950	3,436	16.1	3,556	4.11	104.0	118	12.0	112.3	8.3	49,873
14.4	7.2	0.757	10.7	3.7	11,119					40.0	47.8	0.757	44.6	4.6	14,613
64.0	50	12.0	56.7	7.3	41,393	3,471	16.2	3,591	4.36	104.0	119	12.0	112.9	8.9	53,435
17.8	10.0	0.757	13.7	4.0	12,128					40.0	48.3	0.757	45.0	5.0	15,656
													Compre	ssor: ZPS4	0K5E-PFV

Heating Mode (Full Load)

EMW	EMW-55-HACW-P-1T R410a 60 H														60 Hz
9	Source	e Data	(Indo	or Loo	op)	Pow	ver Co	nsump	tion		Sink D	ata (O	utdoc	or Loo	p)
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	Тс	otal	Effective	Effi- ciency	ELT	Cond. Temp.	Flow	LLT	Delta T	Rejection
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	EER	°F	°F	gpm	°F	°F	Btu/hr
°C	°C	L/s	°C	J°	Watts				COPc	°C	℃	L/s	D°	J°	Watts
53.6	37.8	12.0	45.9	7.7	46,286	1,782	9.2	1,912	7.1	48	70	12.0	57.2	9.2	52,369
12.0	3.2	0.757	7.7	4.3	13,562				24.2	9	21.1	0.757	14.0	5.1	15,344
53.6	38.2	12.0	46.0	7.6	45,602	1,908	9.7	2,038	6.6	53	75	12.0	62.1	9.1	52,114
12.0	3.4	0.757	7.8	4.2	13,361				22.4	12	23.9	0.757	16.7	5.1	15,269
53.6	38.6	12.0	46.1	7.5	44,860	2,036	10.3	2,166	6.1	58	80	12.0	67.1	9.1	51,810
12.0	3.7	0.757	7.8	4.2	13,144				20.7	14	26.7	0.757	19.5	5.0	15,180
53.6	39.0	12.0	46.3	7.3	43,594	2,170	10.9	2,299	5.6	63	85	12.0	71.9	8.9	50,999
12.0	3.9	0.757	8.0	4.0	12,773				19.0	17	29.4	0.757	22.2	5.0	14,943
53.6	39.4	12.0	46.5	7.1	42,315	2,309	11.6	2,442	5.1	69	90	12.0	77.8	8.8	50,198
12.0	4.1	0.757	8.1	3.9	12,398				17.3	21	32.2	0.757	25.4	4.9	14,708
53.6	39.8	12.0	46.8	6.8	41,036	2,458	12.2	2,590	4.6	74	95	12.0	82.7	8.7	49,424
12.0	4.3	0.757	8.2	3.8	12,023				15.8	23	35.0	0.757	28.2	4.8	14,481
53.6	40.2	12.0	47.0	6.6	39,816	2,616	13.0	2,748	4.2	79	100	12.0	87.6	8.6	48,745
12.0	4.6	0.757	8.3	3.7	11,666				14.5	26	37.8	0.757	30.9	4.8	14,282
53.6	40.6	12.0	47.2	6.4	38,487	2,786	13.7	2,919	3.9	84	105	12.0	92.4	8.4	47,997
12.0	4.8	0.757	8.4	3.6	11,277				13.2	29	40.6	0.757	33.6	4.7	14,063
													Comp	ressor: ZPS	S40K5E-PFV

EMW	EMW-65-HACW-P-1T R410a 60 Hz														
S	ource	Data	(Outd	oor Lo	op)	Pow	ver Co	nsump	tion		Sink D	Data (li	ndoor	Loop)
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	To	otal	Effective	COPh	EWT	Cond. Temp.	Flow	LWT	Delta T	Net Output
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	W/W	°F	°F	gpm	°F	°F	Btu/hr
°C	°C	L/s	°C	O°	Watts					С°	°C	L/s	°C	°C	Watts
26.0	15	14.0	22.1	3.9	26,095	3,809	18.6	4,028	2.87	104.0	117	14.0	109.6	5.6	39,391
-3.3	-9.4	0.883	-5.5	2.2	7,646					40.0	47.2	0.883	43.1	3.1	11,541
32.0	20	14.0	27.6	4.4	29,300	3,811	18.6	4,030	3.10	104.0	117	14.0	110.1	6.1	42,604
0.0	-6.7	0.883	-2.4	2.4	8,585					40.0	47.2	0.883	43.4	3.4	12,483
38.0	25	14.0	33.1	4.9	32,263	3,861	18.9	4,079	3.28	104.0	118	14.0	110.5	6.5	45,735
3.3	-3.9	0.883	0.6	2.7	9,453					40.0	47.8	0.883	43.6	3.6	13,400
43.0	30	14.0	37.6	5.4	35,681	3,858	18.8	4,077	3.53	104.0	118	14.0	111.0	7.0	49,143
6.1	-1.1	0.883	3.1	3.0	10,454					40.0	47.8	0.883	43.9	3.9	14,399
48.0	35	14.0	42.2	5.8	38,816	4,160	19.1	4,357	3.59	104.0	119	14.0	111.6	7.6	53,324
8.9	1.7	0.883	5.6	3.2	11,373					40.0	48.3	0.883	44.2	4.2	15,624
54.0	40	14.0	47.5	6.5	42,936	4,411	19.0	4,608	3.71	104.0	119	14.0	112.3	8.3	58,302
12.2	4.4	0.883	8.6	3.6	12,580					40.0	48.3	0.883	44.6	4.6	17,082
60.0	45	14.0	52.9	7.1	46,952	4,464	19.3	4,661	3.93	104.0	120	14.0	112.9	8.9	62,500
15.6	7.2	0.883	11.6	3.9	13,757					40.0	48.9	0.883	45.0	5.0	18,312
66.0	50	14.0	58.2	7.8	51,540	4,462	19.2	4,659	4.22	104.0	120	14.0	113.6	9.6	67,079
18.9	10.0	0.883	14.6	4.3	15,101					40.0	48.9	0.883	45.3	5.3	19,654
													Compre	ssor: ZPS5	51K5E-PFV

Heating Mode (Full Load)

EMW	-65-H/	<u> 4<i>CW-I</i></u>	P-1T								R410a	a 60 Hz			
S	Source	e Data	(Indo	oor Loo	op)	Pow	er Co	nsump	tion		Sink D	ata (C)utdo	or Loo	p)
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	To	tal	Effective	Effi- ciency	ELT	Cond. Temp.	Flow	LLT	Delta T	Rejection
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	EER	°F	°F	gpm	°F	°F	Btu/hr
°C	O° C	L/s	°C	°C	Watts				COPc	°C	°C	L/s	°C	O° C	Watts
53.6	36.4	14.0	45.4	8.2	57,340	2,240	10.7	2,452	6.9	49	70	14.0	58.8	9.8	64,985
12.0	2.4	0.883	7.4	4.6	16,801				23.4	9	21.1	0.883	14.9	5.4	19,040
53.6	36.8	14.0	45.6	8.0	56,108	2,370	11.3	2,582	6.4	54	75	14.0	63.7	9.7	64,197
12.0	2.7	0.883	7.5	4.5	16,440				21.7	12	23.9	0.883	17.6	5.4	18,810
53.6	37.2	14.0	45.8	7.8	54,838	2,509	12.0	2,721	5.9	59	80	14.0	68.5	9.5	63,400
12.0	2.9	0.883	7.6	4.4	16,067				20.2	15	26.7	0.883	20.3	5.3	18,576
53.6	37.6	14.0	46.0	7.6	53,293	2,657	12.7	2,869	5.4	64	85	14.0	73.4	9.4	62,361
12.0	3.1	0.883	7.8	4.2	15,615				18.6	18	29.4	0.883	23.0	5.2	18,272
53.6	38.0	14.0	46.2	7.4	51,781	2,847	13.4	3,050	5.0	70	90	14.0	79.2	9.2	61,497
12.0	3.3	0.883	7.9	4.1	15,172				17.0	21	32.2	0.883	26.2	5.1	18,019
53.6	38.4	14.0	46.4	7.2	50,165	3,021	14.2	3,223	4.6	75	95	14.0	84.1	9.1	60,474
12.0	3.6	0.883	8.0	4.0	14,698				15.6	24	35.0	0.883	28.9	5.1	17,719
53.6	38.8	14.0	46.6	7.0	48,621	3,208	15.1	3,411	4.2	80	100	14.0	89.0	9.0	59,572
12.0	3.8	0.883	8.1	3.9	14,246				14.3	27	37.8	0.883	31.6	5.0	17,454
53.6	39.2	14.0	46.8	6.8	47,251	3,411	16.0	3,614	3.8	85	105	14.0	93.9	8.9	58,895
12.0	4.0	0.883	8.2	3.8	13,845				13.1	29	40.6	0.883	34.4	4.9	17,256
													Com	oressor: ZF	S51K5E-PFV

EMW	EMW-75-HACW-P-1T R410a 60 Hz														60 Hz
	Sour	ce Data	(Outdo	or Loop)		Po	ower Co	onsumptio	n		Sink	CData (li	ndoor L	.oop)	
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	To	tal	Effective	COPh	EWT	Cond. Temp.	Flow	LWT	Delta T	Net Output
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	W/W	°F	°F	gpm	°F	°F	Btu/hr
°C	°C	L/s	°C	O° C	Watts					°C	°C	L/s	°C	°C	Watts
24.0	15	16.0	20.2	3.8	28,577	4,419	22.8	4,635	2.79	104.0	112	16.0	109.5	5.5	44,057
-4.4	-9.4	1.009	-6.5	2.1	8,373					40.0	44.4	1.009	43.1	3.1	12,909
30.0	20	16.0	25.8	4.2	32,106	4,414	22.8	4,630	3.01	104.0	112	16.0	110.0	6.0	47,569
-1.1	-6.7	1.009	-3.5	2.3	9,407					40.0	44.4	1.009	43.3	3.3	13,938
36.0	25	16.0	31.2	4.8	36,549	4,462	23.0	4,677	3.27	104.0	113	16.0	110.5	6.5	52,174
2.2	-3.9	1.009	-0.4	2.7	10,709					40.0	45.0	1.009	43.6	3.6	15,287
42.0	30	16.0	36.5	5.5	41,744	4,451	23.0	4,666	3.60	104.0	113	16.0	111.2	7.2	57,331
5.6	-1.1	1.009	2.5	3.1	12,231					40.0	45.0	1.009	44.0	4.0	16,798
48.0	35	16.0	41.9	6.1	46,409	4,649	23.2	4,856	3.78	104.0	114	16.0	111.8	7.8	62,622
8.9	1.7	1.009	5.5	3.4	13,598					40.0	45.6	1.009	44.4	4.4	18,348
54.0	40	16.0	47.3	6.7	51,266	4,634	23.1	4,840	4.08	104.0	114	16.0	112.4	8.4	67,427
12.2	4.4	1.009	8.5	3.7	15,021					40.0	45.6	1.009	44.7	4.7	19,756
60.0	45	16.0	52.6	7.4	56,104	4,676	23.3	4,882	4.35	104.0	115	16.0	113.1	9.1	72,408
15.6	7.2	1.009	11.5	4.1	16,438					40.0	46.1	1.009	45.0	5.0	21,215
66.0	50	16.0	57.9	8.1	61,671	4,659	23.2	4,866	4.69	104.0	115	16.0	113.7	9.7	77,917
18.9	10.0	1.009	14.4	4.5	18,070					40.0	46.1	1.009	45.4	5.4	22,830
													Compre	ssor: ZPS6	0K5E-PFV

Heating Mode (Full Load)

EMW	-75-H/	<u>ACW-F</u>	P-1T							R410a	a 60 Hz				
	Sou	rce Data	ı (Indoo	r Loop)		P	ower Co	nsumptio	on		Sink	Data (C	Outdoo	r Loop)	
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	Tc	otal	Effective	Effi- ciency	ELT	Cond. Temp.	Flow	LLT	Delta T	Rejection
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	EER	°F	°F	gpm	°F	°F	Btu/hr
°C	°C	L/s	°C	°C	Watts				COPc	°C	°C	L/s	°C	O° C	Watts
53.6	38.0	16.0	45.5	8.1	64,550	2,666	15.0	2,884	6.6	53	70	16.0	62.7	9.7	73,647
12.0	3.3	1.009	7.5	4.5	18,913				22.4	12	21.1	1.009	17.1	5.4	21,578
53.6	38.5	16.0	45.8	7.8	62,721	2,853	15.7	3,071	6.0	58	75	16.0	67.5	9.5	72,458
12.0	3.6	1.009	7.6	4.4	18,377				20.4	14	23.9	1.009	19.7	5.3	21,230
53.6	39.0	16.0	46.0	7.6	60,462	3,043	16.5	3,262	5.4	64	80	16.0	73.3	9.3	70,849
12.0	3.9	1.009	7.8	4.2	17,715				18.5	18	26.7	1.009	23.0	5.2	20,759
53.6	39.5	16.0	46.3	7.3	58,355	3,240	17.3	3,458	4.9	69	85	16.0	78.1	9.1	69,413
12.0	4.2	1.009	7.9	4.1	17,098				16.9	21	29.4	1.009	25.6	5.1	20,338
53.6	40.0	16.0	46.5	7.1	56,526	3,462	18.2	3,678	4.5	75	90	16.0	84.0	9.0	68,343
12.0	4.4	1.009	8.1	3.9	16,562				15.4	24	32.2	1.009	28.9	5.0	20,024
53.6	40.5	16.0	46.7	6.9	54,825	3,679	19.1	3,894	4.1	80	95	16.0	88.9	8.9	67,382
12.0	4.7	1.009	8.2	3.8	16,064				14.1	27	35.0	1.009	31.6	4.9	19,743
53.6	41.0	16.0	47.0	6.6	53,105	3,909	20.0	4,124	3.8	85	100	16.0	93.7	8.7	66,445
12.0	5.0	1.009	8.3	3.7	15,560				12.9	29	37.8	1.009	34.3	4.9	19,468
53.6	41.5	16.0	47.2	6.4	51,428	4,153	21.1	4,369	3.4	90	105	16.0	98.6	8.6	65,603
12.0	5.3	1.009	8.4	3.6	15,068				11.8	32	40.6	1.009	37.0	4.8	19,222
													Comp	ressor: ZP	S60K5E-PFV
Performance Tables - EMW-80

EMW	EMW-80-HACW-P-1S R410a 60 Hz														
	Sour	ce Data	(Outdo	or Loop)		Power Consumption			Sink Data (Indoor Loop)						
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	То	otal	Effective	COPh	EWT	Cond. Temp.	Flow	LWT	Delta T	Net Output
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	W/W	°F	°F	gpm	°F	°F	Btu/hr
°C	°C	L/s	°C	°C	Watts					°C	°C	L/s	°C	°C	Watts
26.0	15	17.0	21.8	4.2	34,067	5,634	27.5	5,823	2.70	104.0	112	17.0	110.3	6.3	53,568
-3.3	-9.4	1.073	-5.7	2.3	9,981					40.0	44.4	1.073	43.5	3.5	15,695
32.0	20	17.0	27.3	4.7	38,322	5,677	27.6	5,866	2.90	104.0	113	17.0	110.8	6.8	57,969
0.0	-6.7	1.073	-2.6	2.6	11,228					40.0	45.0	1.073	43.8	3.8	16,985
37.0	25	17.0	31.7	5.3	42,746	5,729	27.7	5,917	3.10	104.0	114	17.0	111.4	7.4	62,569
2.8	-3.9	1.073	-0.2	2.9	12,524					40.0	45.6	1.073	44.1	4.1	18,333
42.0	30	17.0	36.1	5.9	47,774	5,777	27.8	5,966	3.33	104.0	115	17.0	112.0	8.0	67,763
5.6	-1.1	1.073	2.3	3.3	13,998					40.0	46.1	1.073	44.4	4.4	19,854
47.0	35	17.0	40.5	6.5	52,814	5,822	27.9	6,011	3.56	104.0	116	17.0	112.6	8.6	72,982
8.3	1.7	1.073	4.7	3.6	15,474					40.0	46.7	1.073	44.8	4.8	21,383
51.0	40	17.0	43.8	7.2	57,881	5,893	28.0	6,082	3.77	104.0	117	17.0	113.2	9.2	78,291
10.6	4.4	1.073	6.6	4.0	16,959					40.0	47.2	1.073	45.1	5.1	22,939
57.0	45	17.0	49.2	7.8	62,859	6,031	28.0	6,220	3.94	104.0	118	17.0	113.9	9.9	83,739
13.9	7.2	1.073	9.6	4.3	18,418					40.0	47.8	1.073	45.5	5.5	24,535
62.0	50	17.0	53.6	8.4	67,755	6,218	28.0	6,407	4.08	104.0	119	17.0	114.5	10.5	89,272
16.7	10.0	1.073	12.0	4.7	19,852					40.0	48.3	1.073	45.8	5.8	26,156
													Compre	essor: ZP70	KWE-PFV

Heating Mode

Cooling Mode

EMW	EMW-80-HACW-P-1S R410a 60 H												60 Hz		
	Sou	rce Data	(Indoo	r Loop)		Power Consumption					Sink	Data (O	utdoor	Loop)	
ELT	Evap. Temp	Flow	LLT	Delta T	HAB	Тс	otal	Effective	Effi- ciency	ELT	Cond. Temp.	Flow	LLT	Delta T	Rejec- tion
°F	°F	gpm	°F	°F	Btu/hr	Watts	Amps	Watts	EER	°F	°F	gpm	°F	°F	Btu/hr
°C	0°	L/s	°C	°C	Watts				COPc	°C	°C	L/s	°C	°C	Watts
53.6	35.5	17.0	44.7	8.9	75,484	3,211	16.8	3,382	6.5	50	70	17.0	60.7	10.7	86,442
12.0	1.9	1.073	7.1	4.9	22,116				22.3	10	21.1	1.073	15.9	5.9	25,327
53.6	36.0	17.0	44.9	8.7	74,161	3,399	17.7	3,571	6.1	55	75	17.0	65.6	10.6	85,762
12.0	2.2	1.073	7.1	4.9	21,729				20.8	13	23.9	1.073	18.7	5.9	25,128
53.6	36.5	17.0	45.0	8.6	72,642	3,603	18.7	3,775	5.6	60	80	17.0	70.5	10.5	84,938
12.0	2.5	1.073	7.2	4.8	21,284				19.2	16	26.7	1.073	21.4	5.8	24,887
53.6	37.0	17.0	45.2	8.4	70,929	3,791	19.7	3,962	5.2	65	85	17.0	75.4	10.4	83,867
12.0	2.8	1.073	7.4	4.6	20,782				17.9	18	29.4	1.073	24.1	5.8	24,573
53.6	37.5	17.0	45.5	8.1	68,881	3,982	20.8	4,164	4.8	70	90	17.0	80.2	10.2	82,472
12.0	3.1	1.073	7.5	4.5	20,182				16.5	21	32.2	1.073	26.8	5.7	24,164
53.6	38.0	17.0	45.7	7.9	66,803	4,158	21.9	4,340	4.5	75	95	17.0	85.0	10.0	80,993
12.0	3.3	1.073	7.6	4.4	19,573				15.4	24	35.0	1.073	29.5	5.6	23,731
53.6	38.5	17.0	45.9	7.7	65,065	4,387	23.1	4,568	4.2	80	100	17.0	89.9	9.9	80,037
12.0	3.6	1.073	7.7	4.3	19,064				14.2	27	37.8	1.073	32.2	5.5	23,451
53.6	39.0	17.0	46.1	7.5	63,356	4,629	24.4	4,811	3.9	85	105	17.0	94.8	9.8	79,156
12.0	3.9	1.073	7.9	4.1	18,563				13.2	29	40.6	1.073	34.9	5.4	23,193
										•			Compre	essor: ZP7	KWE-PFV

Electrical Specifications

TABLE	TABLE 24 - EMW-Series Electrical Data												
	Code	Powe	r Supply		Compressor		Internal Circulators	Electric Elements	Outdoor Circulators	FLA	MCA	Max. Breaker	Min. Wire Size
		V-ø-Hz	MIN	MAX	RLA	LRA	RLA	Max A	Max A	Amps	Amps	Amps	ga
	1	230-1-60	187	253	15.6	83	2.5	48	4.0	70.9	86.8	100	#3-3
EMW-	2	208-3-60	187	229	11.6	73	2.5	43	4.0	61.9	75.6	80	#4-4
45	6	220-1-50	187	253	12.4	67	2.5	43	4.0	62.7	76.6	80	#4-2
	7	380-3-50	342	418	5.1	38	2.5	43	4.0	55.4	67.4	80	#4-4
	1	230-1-60	187	253	21.2	104	2.5	48	5.0	77.5	94.8	100	#3-3
EMW-	2	208-3-60	187	229	14.0	83	2.5	43	5.0	65.3	79.6	80	#4-4
55	6	220-1-50	187	253	15.5	100	2.5	43	5.0	66.8	81.4	100	#3-2
	7	380-3-50	342	418	6.1	43	2.5	43	5.0	57.4	69.7	80	#4-4
	1	230-1-60	187	253	27.1	153	2.5	48	5.0	83.4	102.2	125	#1-3
EMW-	2	208-3-60	187	229	16.5	110	2.5	43	5.0	67.8	82.7	100	#3-4
65	6	220-1-50	187	253	21.5	126	2.5	43	5.0	72.8	88.9	100	#3-2
	7	380-3-50	342	418	6.9	52	2.5	43	5.0	58.2	70.7	80	#4-4
	1	230-1-60	187	253	29.7	179	2.5	48	5.0	86.0	105.4	125	#1-3
EMW-	2	208-3-60	187	229	17.6	136	2.5	43	5.0	68.9	84.1	100	#3-4
75	6	220-1-50	187	253	29.5	176	2.5	43	5.0	80.8	98.9	125	#1-2
	7	380-3-50	342	418	8.5	67	2.5	43	5.0	59.8	72.7	80	#4-4
	1	230-1-60	187	253	32.1	148	2.5	48	5.0	88.4	108.4	125	#1-3
EMW-	2	208-3-60	187	229	22.4	149	2.5	43	5.0	73.7	90.1	100	#3-4
	7	380-3-50	342	418	10.6	74	2.5	43	5.0	61.9	75.3	80	#4-4

Wiring Diagram (208/230-1-60)

Electrical Box Layout (208/230-1-60)

Wiring Diagram (208-3-60)

1-Dec-2018

Electrical Box Layout (208-3-60)

Dimensions

Appendix A - GEN2 Control Board Description

The picture below shows the locations of the connectors and LED indicators of the control board. The control board offers many features such as short circuit protection on all digital outputs, Real Time Clock with super capacitor for backup power, WiFi capability, relay outputs for plenum heater control (if equipped), USB port, PIC32 microcontroller, etc.

The tables describe the connections starting with the top of the board and working around the board counter clock-wise.

TABLE A1	- Control Board Connector	r Descriptions (Top)
Name	Description	
HPS1/HI1	High Pressure Sensor 1	Measures discharge pressure.
LPS1/LO1	Low Pressure Sensor 1	Measures suction pressure.
EEV1	Local EEV	Control of Electronic Expansion Valve.
TS1	Suction Line Temperature 1	Mounted to common suction line inside unit.
EEV2	Remote EEV	Unused.
TS2	Suction Line Temperature 2	Unused.
HPS2/HI2	High Pressure Sensor 2	Unused.
LPS2/LO2	Low Pressure Sensor 2	Unused.
HTS/ODTS	Outdoor Temperature	Optional outdoor temperature sensor for outdoor reset feature.
CTS	Auto Calibration	Resistor in connector for auto-calibration reference (32°F—0°C).
I_IN	Indoor Loop IN	Mounted to pipe inside unit (in heat pump to tank circuit).
I_OUT	Indoor Loop OUT	Mounted to pipe inside unit (in heat pump to tank circuit).
O_IN	Outdoor Loop IN	Mounted to pipe inside unit.
O_OUT	Outdoor Loop OUT	Mounted to pipe inside unit.

TABLE A2	- Control Board Connect	or Descriptions (Left Side)
Name	Description	
PWM_IN	Signal for PWM IN	Unused.
IN_SPARE	Spare digital input	Unused.
COM_IN	Common for PWM IN	Unused.
PWM4	PWM / 0-10VDC output	Unused.
PWM3	PWM / 0-10VDC output	Unused.
PWM2	PWM / 0-10VDC output	Unused.
PWM1	PWM / 0-10VDC output	Unused.
GND	Ground	Unused.
HZC	Hot Zone Circulator	Operates the Zone Circulator.
CZC	Cold Zone Circulator	Unused.
ICR	Internal Circulator Relay	Operates the Indoor Circulator (in heat pump to tank circuit).
DO_3	Auxiliary Only	Unused.
DO_2	Hydronic Auxiliary	Operates the auxiliary heat electric elements in buffer tank.
DO_1	Digital output	Unused.
DO_0	Digital output	To open loop water valve end switch or closed loop jumper plug (back to ODFLO).
LC	Loop common (ground)	Unused.
L6	Loop6	Unused.
L5	Loop5	Unused.
L4	Loop4	Unused.
L3	Loop3	Unused.
L2	Loop2	Unused.
L1	Loop1	Unused.
C(SH)	Soaker Hose common	Unused.
SH	Soaker Hose	Unused.

TABLE A3 - Control Board Connector Descriptions (Bottom)								
Name	Description							
GND	BACnet MS/TP	Ground for shield if required.						
В	BACnet MS/TP	RS-485.						
А	BACnet MS/TP	RS-485.						
STAGE1	Compressor Stage 1	Starts / stops the compressor.						
STAGE2	Compressor Stage 2	Turns the compressor Stage 2 solenoid on/off.						
RV_#1	Reversing Valve#1	Off in heating mode, on in cooling mode.						
RV_#2	Reversing Valve#2	Unused.						
SOL#1	Solenoid#1	Unused.						
SOL#2	Solenoid#2	Unused.						
24VAC	Power supply for board	24VAC power for control board.						
СОМ	Power supply for board	GND for control board.						
AI_5	Analog In Channel 5	0 to 5VDC or 4-20mA user settable with board jumper.						
AI_4	Analog In Channel 4	0 to 5VDC or 4-20mA user settable with board jumper.						
AI_3	Analog In Channel 3	0 to 5VDC or 4-20mA user settable with board jumper.						
AI_2	Analog In Channel 2	0 to 5VDC or 4-20mA user settable with board jumper.						
AI_1	Analog In Channel 1	0 to 5VDC or 4-20mA user settable with board jumper.						
AI_0	Analog In Channel 0	Optional compressor current sensor.						
GND	Ground pin	Ground for analog sensors.						
GND	Ground pin	Ground for analog sensors.						
5VDC	Power for analog sensors	Provides 5VDC power supply for sensors.						
12VDC	Power for analog sensors	Provides 12VDC power supply for sensors.						
24VDC	Power for analog sensors	Provides 24VDC power supply for sensors.						
A	MODBUS	RS-485.						
В	MODBUS	RS-485.						
GND	MODBUS	Ground for shield if required.						

TABLE /	A4 - Control Board Connecte	or Descriptions (Right Side)
Name	Description	
DI_1	Digital Input1	Unused.
DI_0	Digital Input0	Low pressure select from open/closed loop harness (0=open loop, 1=closed loop)
PM2	Phase Monitor2	Unused.
PM1	Phase Monitor1	Accessory for 3 phase models.
Y2A*	Aquastat Stage2	Unused.
RA*	Aquastat Power (24VAC)	Unused.
Y1A*	Aquastat Stage1	Unused.
CA*	Aquastat Power (Ground)	Unused.
2	Plenum Heat Stage2	Unused.
1	Plenum Heat Stage1	Unused.
С	Plenum Heat Common	Unused.
AR	Airflow Reductions	Unused.
24VAC	Power	Power to low pressure select (DI_0).
ODFLO	Outdoor Flow Switch	Return signal from open loop water valve end switch, or closed loop jumper plug.
IDFLO	Indoor Flow Switch	Unused.
L	Lockout Indicator	24VAC trouble LED.
E	Thermostat Emergency Heat	Unused.
0	Thermostat Heat/Cool	24VAC input to activate cooling mode.
W2	Thermostat Auxiliary Heat	Unused.
Y2	Thermostat Stage2	Unused.
Y1	Thermostat Stage1	24VAC input to run zone circulator.
G	Thermostat Fan Recirculation	Unused.
R	Thermostat Power (24VAC)	24VAC to terminal strip.
С	Thermostat Power (Ground)	24VAC to terminal strip.

Appendix B - USB Driver Installation

The first step in connecting a Windows laptop computer to the control board is to install the USB driver.

Any version of Windows from XP and onwards is compatible, including 7 & 10. Screenshots shown are from Windows 10.

1. Go to www.nordicghp.com, Download Software page:

2. Click on MGL GEN2 USB Driver Installer to download it:

3. Choose "Open with Windows Explorer", and hit "OK":

which is: Cor	npressed (zipped) Folder (339 KB)
from: http://	www.nordicghp.com
hat should Firef	ox do with this file?
• Open with	Windows Explorer (default)
○ <u>S</u> ave File	
Do this auto	matically for files like this from now on.

4. In the window that is displayed, click and hold down the mouse button on the folder name, and drag to your desktop:

le Home Share	View Extract			~ Q	
9					
-> - 🛧 👔 « Local	> Temp > MGL-GEN2-USB-Driv	er-Installer-2.zip	v Ö Search MGL-GE	N2-USB-Drive	
	Name	Type	Compressed size	Password Size	
Quick access Deskton	MGL GEN2 USB Installer	File folder			
Downloads #					
a Documents #					
📰 Pictures 🛷 🗃					
OneDrive					
Computer					A Court
3D Objects					- Copy to
E Desktop					
a Documents					
Downloads					
h Music					
-					
Pictures					

5. Double click on the folder you just dragged onto the desktop, then double click on the "USBDriverInstaller" file:

C:\Users\Dan\Desl	ktop∖M	GL GEN2 USB Installer			-		x			
File Home	Share	View					~ 🕐			
2 5 6 =										
$\leftarrow \rightarrow \checkmark \uparrow$ $\blacksquare \rightarrow$ MGL GEN2 USB Installer $\checkmark \eth$ Search MGL GEN2 USB Installer \checkmark										
	^	Name	Туре	5	bize					
🖈 Quick access	=		Application ext	ension	508	(B				
E Desktop	* -	DIFxAPL x86 dll	Application extension		317	(B				
🕹 Downloads	*	mchncdc.cat	Security Catalo	a	71	(B				
Documents	*	mchpcdc.inf	Setup Informat	ion	41	(B				
E Pictures	*	SubpriverInstaller.exe	Application		32	(B				
0 OneDrive	~		\$							

6. In the next window, click on "Install Drivers":

_	🕸 USB Driver Management Tool 64-Bit	-	x
	Install Drivers Remove Drivers		

7. You will see a message indicating the driver was installed successfully. Proceed to the PC App Installation.

🕸 USB Driver Management Tool 64-Bit	-		x
Install Drivers Remove Drivers			
Starting driver installation. Please wait Complete: Driver was pre-installed to the driver s Note: If the Found New Hardware Wizard appe the device, allow Windows to search automatic	tore success ars upon plug ally for the dri	fully. jging in ver.	

Appendix C - PC App Installation

The second step in connecting a Windows laptop computer to the control board is to install the PC App. Be sure USB driver is already installed.

Any version of Windows from XP and onwards is compatible, including 7 & 10. Screenshots shown are from Windows 10.

1. Go to www.nordicghp.com, Download Software page:

 Click on MGL GEN2 PCAPP V__ to download it. Choose the latest version, which has the highest number and appears highest in the list.

3. Choose "Open with Windows Explorer", and hit "OK":

4. In the window that is displayed, click and hold down the mouse button on the folder name, and drag to your desktop:

-PC-APP ∨ ♂ Sea	arch MGT-GEN2-PC-APP.		
e *	Type		
	21		
IGT-GEN2-PC-APP-V130	File folder		
	e معلم معلم معلم معلم معلم معلم معلم معل	-PC-APP v ð Search MGT-GEN2-PC-APP. e Type MGT-GEN2-PC-APP-V130 File folder	-PC-APP ↓) Search MGT-GEN2-PC-APP ↓ e Type AGT-GEN2-PC-APP-V130 File folder

5. Double click on the folder you just dragged onto the desktop, then double click on the "setup" file:

📙 C:\Users\Dan\Desktop	p\MGT-GEN2-PC-APP-V130		-		x		
File Home Sh	are View				~ 🕐		
🗹 📙 🎾 🤁 📼	🖸 📙 🤊 🥙 📼						
← → ~ ↑	MGT-GEN2-PC-APP-V130 v Ö	Search MG	GT-GEN2	PC-APP.	P		
	^ Name	Туре		Size			
🖈 Quick access	= Application Files	File folder					
🚬 Desktop 🛛 🖈	MGT GEN2 PC APP V130.application	Application I	Manif		2 KB		
👆 Downloads 🖈	setup.exe	Application		51	11 KB		
🚝 Documents 🖈							
📰 Pictures 🛛 🖈							
OneDrive							
Computer 3 items	×			[

 Click "Yes", "Run", "Install", or similar on any warning windows which pop up. If an error message is encountered regarding Visual Basic PowerPacks or .Netframework, exit the installation and use the links on the Download Software page to install the missing items:

Possible Additional Downloads:
During installation of the PC Application, the following prerequisite files may be required: VB PowerPack 10 and/or .netframework 4.0. If either of these is asked for during PC Application installation, please download them from the links below.
UB PowerPack 10 Inetframework 4.0

Then go back to step 5.

7. The PC App will open when it is finished installing. You are now ready to connect a USB cord between the laptop computer and GEN2 control board, and connect.

METHOD 1: Updating Firmware Using PC App

The following provides step by step instructions to update the firmware in the control board to the latest release.

The firmware comes as a ZIP file named: *MGT GEN2 Bootload Firmware Vxxx.zip* where xxx is the version reference, e.g. 254 (version 2.54, this will be used for the remainder of this procedure). This file can be downloaded from our website www.nordicghp.com. Menu "For Dealers" --> "Download Software"; choose the latest (highest numbered) version.

- 1. Download the file to your PC; we recommend creating a folder system such as: DesktopWGT GEN2 Bootload Firmware\V2.54
- Unzip the file in the created folder. There will be three files: The firmware file: MGT_GEN2_V254.production.hex The programmer: PIC32UBL.exe Instruction sheet: USB Bootloader Instructions V2.pdf
- 3. Connect a USB (printer) cable from the PC to the control board.

Ethernet IP Address

UDP Port

192 . 168 . 1 . 11

4. Launch the PC APP (V1.30 or higher) and click on the Connect Button to connect to the control board.

5.	Go to menu Tools — Configuration Page	Configuration Page		
(picture to right)		Firmware Revision V2.54	FIRMWARE UPDATE	System Enabled
		Parameters In Sync 🔵		
6.	Click on the FIRMWARE message will appear:	UPDATE button. The following	8. Click on OK . The following me	essage will appear:
Prep	Proceed with firmware update	x te? PC APP will automatically disconnect ard.	Firmware Update MGT GEN2 Control board is no	imes w ready for firmware update
7		'es No Cancel		ОК
7.	Preparing Firmware Update	nware Update, please wait	9. Click on OK . The control board and is ready to be programme	d is now in bootloader mode d.
		ОК	1	
10.	Run PIC32UBL.exe. Cli	ck on the USB Enable check box. Th	ne screen should look like below.	
	0	PIC32 Bootloader Application V1.2		×
		Communication Settings Com Port Baud Rate COM1 I15200 Enable USB VID PID 0x4D8 0x03C Image: Enable	Bootloader Ver Load Hex File Erase Program Verify Run Application Erase-Program-Verify Connect	

🗌 Enable

11. Click on **Connect.** The messages should read:

Bootloader Ver	Load Hex File	Erase	
Program	Verify	Run Application	
Erase-Pro	gram-Verify	Disconnect	
Device connected Bootloader Firmw	are Version: 2.0		
If device fails to displayed, the b v2.0. It will be r ware via jumper Click on Load He MGT_GEN2_V2	connect and an er board's bootloader in necessary to instea r pins, as per the ne ex File. Select the 54.production.he	ror message is may be older thar id update the firm ext section. x file and click of	
Open. The means Bootloader Ver	Load Hex File	ad: Erase	
Program	Verify	Run Application	
Erase-Prog	gram-Verify	Disconnect	
Device connected		^	
Bootloader Firmwa Hex file loaded su Click on Erase—	are Version: 2.0 accessfully Program—Verify.	Program-	
Bootloader Firmwa Hex file loaded su Click on Erase ning Wait whi nessages should	are Version: 2.0 accessfully Program—Verify. le status bar shows d read as below wh	Program- s progress. The en finished:	
Bootloader Firmwa Hex file loaded su Click on Erase— ning Wait whi nessages should Bootloader Ver	are Version: 2.0 accessfully Program—Verify. le status bar shows d read as below wh Load Hex File	Program- s progress. The en finished: Erase	
Bootloader Firmwa Hex file loaded su Click on Erase ning Wait whi nessages should Bootloader Ver Program	are Version: 2.0 accessfully Program—Verify. le status bar shows d read as below wh Load Hex File Verify	Program- s progress. The len finished: Erase Run Application	
Bootloader Firmwa Hex file loaded su Click on Erase- ning Wait whi nessages should Bootloader Ver Program Erase-Prog	are Version: 2.0 accessfully Program—Verify. le status bar shows d read as below wh Load Hex File Verify ram-Verify	Program- s progress. The len finished: Erase Run Application Disconnect	
Bootloader Firmwa Hex file loaded su Click on Erase- ming Wait whi messages should Bootloader Ver Program Erase-Prog	are Version: 2.0 accessfully Program—Verify. le status bar shows d read as below wh Load Hex File Verify ram-Verify	Program- s progress. The len finished: Erase Run Application Disconnect	

14. Programmed and verified. Click on **Run Application.** The messages should read:

Bootloader Ver	Load Hex File	Erase
Program	Verify	Run Application
Erase-Prog	Disconnect	

Device connected	~
Bootloader Firmware Version: 2.0	
bootoader Firmware version, 2.0	
Hex file loaded successfully	
Flash Erased	
Programming completed	
Verification successful	
Command issued to run application	

15. Wait until the programmer disconnects itself. The messages should read as follows:

- 16. Close the program.
- 17. WAIT APPROXIMATELY 10 SECONDS. This gives the control board time to reset, initialize and re-connect to the PC USB port.
- 18. Go back to the PC APP and click on the **Connect** button. Verify that the firmware version has been updated. Perform any configuration needed.

IMPORTANT NOTE: updating the firmware does not affect the configuration settings.

/ MGT	GEN2 F	C APP V1.	30 Cor	ntrol Board	Firmware V2.54		
File	View	Graphs	Tools	Windows	; Help	Disconnect	ONLINE 🚫
📂 🚽				UNITS	STANDARD	MANUAL O	VERRIDE 🔴

METHOD 2: Updating Firmware Using Jumper Pins

The following provides step by step instructions to update the firmware in the control board to the latest release.

The firmware comes as a ZIP file named:

MGT GEN2 Bootload Firmware Vxxx.zip where xxx is the version reference, i.e. 255 (version 2.55, this will be used for the remainder of this procedure). This file can be downloaded from our website www.nordicghp.com. There is a table which lists the latest firmware by heat pump series, se-

lect the appropriate file to download.

1. Download the file to your PC, we recommend creating a folder system such as the following:

Desktop\MGT GEN2 Bootload Firmware\V2.55

- 2. Unzip the file in the created folder. There will be two files: The firmware file: MGT_GEN2_V255.production.hex The programmer: PIC32UBL.exe
- 3. Connect a USB cable to the control board.
- 4. Turn the power off to the unit.
- 5. Remove one of the black pin jumpers from just below the USB connector on the board and place in on the center pin pair of the EXPANSION header as shown below.

Remove a jumper from here.

Place jumper here.

- 6. Turn the power back on. The control board is now in boot loader mode and is ready to be programmed.
- 7. Run PIC32UBL.exe. Click on the USB Enable check box. The screen should look like the picture below.

🕸 PIC32 Bootloader Application V1.2			×		
Communication Settings	Bootload	ler Ver Load Hex Fi	le Erase		
Com Port Baud Rate	Progr	am Verify	Run Application		
COM1 V 115200 V	Enable	rase-Program-Verify	Connect		
USB VID PID					
0x4D8 0x03C	Enable		^		
Ethernet					
IP Address					
192 . 168 . 1 . 11					
6234	Enable				
			~		
	,				
8. Click on Connect.	Bootloader Ver	Load Hex File	Erase		
	Program	Verify	Run Application		
	Erase-Prog	ram-Verify	Disconnect		
	Device connected	ve Versien, 1.0	^		
	Booudader Firmwa	are version; 1.0			
9. Click on Load Hex	Bootloader Ver	Load Hex File	Erase		
File. Select the	Dream	Unvifu	Due épolication		
MGT_GEN2_V255.prod			Ran Application		
uction.nex me.	Erase-Program-verity Disconnect				
Device connected Bootloader Firmware Version: 1.0					
	Hex file loaded su	ccesstully			
10. Click on Erase—	Bootloader Ver	Load Hex File	Erase		
Program—Verify	Program	Verify	Run Application		
Drogromming		Verif.	Disconset		
Programming	Erase-Prog	ram-verity	Disconnect		
	Device energy and				
	Bootloader Firmwa	are Version: 1.0			
	Flash Erased	ccesstully			
11. "Programming	Bootloader Ver	Load Hex File	Erase		
completed. Verifi-	Brogram	Verify	Pup Application		
cation successful."	Frogram	veniy	Run Application		
Disconnect and	Erase-Prog	gram-Verity	Disconnect		
close the program.	Device recent				
	Bootloader Firmware Version: 1.0				
12. Turn the power off.	Hex file loaded successfully Flash Erased				
12 Move the jumper	Programming com Verification succes	pleted ssfull			
back to where it was					

14. Turn the power back on. Check that the LCD Display shows MGT GEN2 V2.55 on the top line.

taken from.

LIMITED EXPRESS WARRANTY

It is expressly understood that unless a statement is specifically identified as a warranty, statements made by Maritime Geothermal Ltd., a corporation registered in New Brunswick, Canada, ("MG") or its representatives, relating to MG's products, whether oral, written or contained in any sales literature, catalogue or agreement, are not express

warranties and do not form a part of the basis of the bargain, but are merely MG's opinion or commendation of MG's products. EXCEPT AS SPECIFICALLY SET FORTH HEREIN, THERE IS NO EXPRESS WARRANTY AS TO ANY OF MG'S PRODUCTS. MG MAKES NO WARRANTY AGAINST LATENT DEFECTS. MG MAKES NO WARRANTY OF MERCHANTABILITY OF THE GOODS OR OF THE FITNESS OF THE GOODS FOR ANY PARTICULAR PURPOSE.

LIMITED EXPRESS RESIDENTIAL WARRANTY - PARTS

MG warrants its Residential Class products, purchased and retained in the United States of America and Canada, to be free from defects in material and workmanship under normal use and maintenance as follows:

- Air conditioning, heating and/or heat pump units built or sold by MG ("MG Units") for five (5) years from the Warranty Inception Date (as defined below). Thermostats, auxiliary electric heaters and geothermal pumping modules built or sold by MG, when installed with MG Units, for five (5) years from the Warranty Inception
- Date (as defined below).
- (3) Sealed refrigerant circuit components of MG Units (which components only include the compressor, refrigerant to air/water heat exchangers, reversing valve body and refrigerant metering device) for ten (10) years from the Warranty Inception Date (as defined below).
 (4) Other accessories and parts built or sold by MG, when installed and purchased with MG Units, for five (5) years from the date of shipment from MG.
 (5) Other accessories, when purchased separately, for (1) year from the date of shipment from MG.

The "Warranty Inception Date" shall be the date of original unit installation, as per the date on the installation Startup Record or six (6) months from date of unit shipment from MG, whichever comes first.

To make a claim under this warranty, parts must be returned to MG in Petitcodiac, New Brunswick, freight prepaid, no later than ninety (90) days after the date of the failure of the part. If MG determines the part to be defective and within MG's Limited Express Residential Warranty, MG shall, when such part has been either replaced or repaired, return such to a factory recognized distributor, dealer or service organization, freight prepaid. The warranty on any part repaired or replaced under warranty expires at the end of the original warranty period.

LIMITED EXPRESS RESIDENTIAL WARRANTY - LABOUR

This Limited Express Residential Labour Warranty shall cover the labour incurred by MG authorized service personnel in connection with the installation of a new or repaired warranty part that is covered by this Limited Express Residential Warranty only to the extent specifically set forth in the current labour allowance schedule "A" provided by MG's Warranty Department and only as follows: (1) MG Units for two (2) years from the Warranty Inception Date.

- Thermostats, auxiliary electric heaters and geothermal pump modules built or sold by MG, when installed with MG Units, for two (2) years from the Warranty Inception Date. Sealed refrigerant circuit components of MG Units (which components only include the compressor, refrigerant to air/water heat exchangers, reversing valve body and Ì3Ì refrigerant metering device) for five (5) years from the Warranty Inception Date.

Labour costs are not covered by this Limited Express Residential Warranty to the extent they exceed the amount allowed under said allowance schedule, they are not specifically provided for in said allowance schedule, they are not the result of work performed by MG authorized service personnel, they are incurred in connection with a part not covered by this Limited Express Residential Warranty, or they are incurred more than the time periods set forth in this paragraph after the Warranty Inception Date. This warranty does not cover and does not apply to:

- 1) Air filters, fuses, refrigerant, fluids, oil.
- Products relocated after initial installation.
- Any portion or component of any system that is not supplied by MG, regardless of the cause of the failure of such portion or component. Products on which the unit identification tags or labels have been removed or defaced. (3) (4)
- Products on which payment to MG, or to the owner's seller or installing contractor, is in default. (5)
- (6) Products subjected to improper or inadequate installation, maintenance, repair, wiring or voltage conditions.
- (7) Products subjected to accident, misuse, negligence, abuse, fire, flood, lightning, unauthorized alteration, misapplication, contaminated or corrosive liquid or air supply, operation at abnormal air or liquid temperatures or flow rates, or opening of the refrigerant circuit by unqualified personnel.
- (8) Mold, fungus or bacteria damage
- (9)Corrosion or abrasion of the product.
- (10) Products supplied by others.
 (11) Products which have been operated in a manner contrary to MG's printed instructions.
- Products which have insufficient performance as a result of improper system design or improper application, installation, or use of MG's products.
- (13) Electricity or fuel, or any increases or unrealized savings in same, for any reason whatsoever.

Except for the limited labour allowance coverage set forth above, MG is not responsible for:

- (1) The costs of fluids, refrigerant or system components supplied by others, or associated labour to repair or replace the
- same, which is incurred as a result of a defective part covered by MG's Limited Residential Warranty. (2) The costs of labour, refrigerant, materials or service incurred in diagnosis and removal of the defective part, or in obtaining and replacing the new or repaired part.
- (3) Transportation costs of the defective part from the installation site to MG, or of the return of that part if not covered by
- MG's Limited Express Residential Warranty.
- (4) The costs of normal maintenance.

This Limited Express Residential Warranty applies to MG Residential Class products manufactured on or after February 15, 2010. MG'S LIABILITY UNDER THE TERMS OF THIS LIMITED WARRANTY SHALL APPLY ONLY TO THE MG UNITS REGISTERED WITH MG THAT BEARS THE MODEL AND SERIAL NUMBERS STATED ON THE INSTALLATION START UP RECORD, AND MG SHALL NOT, IN ANY EVENT, BE LIABLE UNDER THE TERMS OF THIS LIMITED WARRANTY UNLESS THIS UNDER THE TERMS OF THIS LIMITED WARRANTY UNDER SHALL NOT, IN ANY EVENT, BE LIABLE UNDER THE TERMS OF THIS LIMITED WARRANTY UNLESS THIS UNDER THE TERMS OF COMPACT AND DECORD. INSTALLATION START UP RECORD HAS BEEN ENDORSED BY OWNER & DEALER/INSTALLER AND RECIEVED BY MG LIMITED WITHIN 90 DAYS OF START UP.

Limitation: This Limited Express Residential Warranty is given in lieu of all other warranties. If, not withstanding the disclaimers contained herein, it is determined that other warranties exist, any such express warranty, including without imitation any express warranties or any implied warranties of fitness for particular purpose and merchantability, shall be limited to the duration of the Limited Express Residential Warranty.

LIMITATION OF REMEDIES In the event of a breach of the Limited Express Residential Warranty, MG will only be obligated at MG's option to repair the failed part or unit, or to furnish a new or rebuilt part or unit in exchange for the part or unit which has failed. If after written notice to MG's factory in Petitodiac, New Brunswick of each defect, mal-function or other failure, and a reasonable number of attempts by MG to correct the defect, malfunction or other failure, and the remedy fails of its essential purpose, MG shall refund the purchase price paid to MG in exchange for the return of the sold good(s). Said refund shall be the maximum liability of MG. THIS REMEDY IS THE SOLE AND EXCLUSIVE REMEDY OF THE BUYER OR PURCHASER AGAINST MG FOR BREACH OF CONTRACT, FOR THE BREACH OF ANY WARRANTY OR FOR MG'S NEGLIGENCE OR IN STRICT LIABILITY.

LIMITATION OF LIABILITY MG shall have no liability for any damages if MG's performance is delayed for any reason or is prevented to any extent by any event such as, but not limited to: any war, civil unrest, government restrictions or restraints, strikes, or work stoppages, fire, flood, accident, shortages of transportation, fuel, material, or labour, acts of God or any other reason beyond the sole control of MG. MG EXPRESSLY DISCLAIMS AND EXCLUDES ANY LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGE IN CONTRACT, FOR BREACH OF ANY EXPRESS OR IMPLIED WARRANTY, OR IN TORT, WHETHER FOR MG's NEGLIGENCE OR AS STRICT LIABILITY.

OBTAINING WARRANTY PERFORMANCE Normally, the dealer or service organization who installed the products will provide warranty performance for the owner. Should the installed be unavailable, contact any MG recognized distributor, dealer or service organization. If assistance is required in obtaining warranty performance, write or call: Maritime Geothermal Ltd • Customer Service • PO Box 2555 • Petitcodiac, New Brunswick E4Z 6H4 • (506) 756 B135 • or e-mail to info@nordicghp.com NOTE: Some states or Canadian provinces do not allow limitations on how long an implied warranty lasts, or the limitation or exclusions of consequential or incidental damages, so the foregoing exclusions and limitations may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state and from Canadian province to Canadian province. Please refer to the MG Installation, Installation and Service Manual for operating and maintenance instructions.