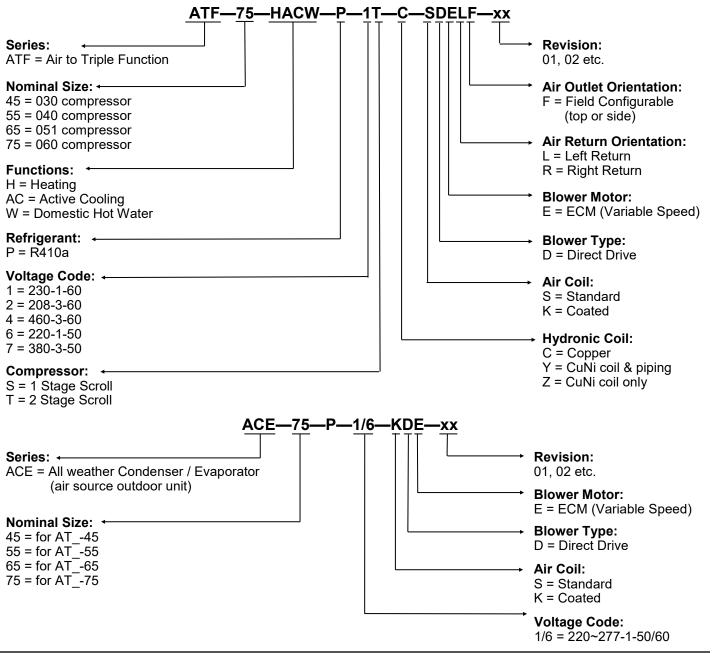


Application, Installation, & Service Manual

ATF-Series Triple Function Central Air Source Heat Pump

Two-stage R410a 60Hz Model Sizes 45-75


info@nordicghp.com www.nordicghp.com 002000MAN-04

Maritime Geothermal Ltd. P.O. Box 2555, 170 Plantation Road Petitcodiac, NB E4Z 6H4 (506) 756-8135

- WARNING: Ensure all access panels are in place and properly secured before applying power to the unit. Failure to do so may cause electrical shock.
- **WARNING:** Before performing service or maintenance on the system, ensure all power sources are DISCONNECTED. Electrical shock can cause serious personal injury or death.
- WARNING: Refrigeration systems contain refrigerant under high pressure and as such can be hazardous to work on. Only qualified service personnel should install, repair, or service the heat pump.
- **CAUTION:** Safety glasses and work gloves should be worn at all times whenever the system is serviced. A fire extinguisher and proper ventilation should be present whenever brazing is performed.
- **CAUTION:** Venting refrigerant to atmosphere is illegal. A proper refrigerant recovery system must be employed whenever repairs require removal of refrigerant from the equipment.

Model Nomenclature

MODEL	FUNCTION	REFRIGERANT	VOLTAGE	COMPRESSOR	HYDRONIC COIL	AIR COIL/ BLOWER/AIR RETURN	AIR RETURN	AIR OUTLET		REVIS	SIONS	
ATF-45	HACW	Ρ	1 2 4	т	C Y Z	SDE	L R	F	05			
ATF-55	HACW	Ρ	1 2 4	Т	C Y Z	SDE	L R	F	05			
ATF-65	HACW	Ρ	1 2 4	Т	C Y Z	SDE	L R	F	05			
ATF-75	HACW	Р	1 2 4	Т	C Y Z	SDE	L R	F	05			

APPLICAT	APPLICATION TABLE - OUTDOOR UNIT								
MODEL	REFRIGERANT	VOLTAGE	AIR COIL	BLOWER TYPE	BLOWER MOTOR		REVISIONS		
ACE-45	Ρ	1/6	К	D	Е	03	04		
ACE-55	Ρ	1/6	к	D	E	03	04		
ACE-65	Ρ	1/6	к	D	E	08			
ACE-75	Р	1/6	К	D	E	08			
This manual	applies only to	the models an	d revisions list	ed in this table.					

APPLICATION TABLE - FIRMWARE AND PC APP				
Firmware	Version	Associated PC APP	Version	
MGT GEN2 Bootload Firmware	V3.60+	MGT GEN2 PC APP	V2.00+	

Maritime Geothermal Ltd. has a continuous improvement policy and reserves the right to modify specification data at any time without prior notice .

Table of Contents

Tables & Documents5
ATF System Description6
General Overview
1. Air Heating Mode
Defrost Operation
2. Hydronic (Water) Heating Mode
Auxiliary Hydronic Heat
Factory Options
Mode & Priority Selection
ATF Sizing8
Air Source Heat Pumps
Plenum Heater Sizing
Installation Basics
Sample Bill of Materials
Unpacking the unit
Indoor Unit Placement9
Placement of Tanks
Plenum Heater Installation
001915INF - Internal Plenum Heater Installation
Outdoor Unit Placement 12 Outdoor Fan Speed Reduction 12
Outdoor Fan Speed Reduction
Average Max. Snow Depth Map - Canada
Wiring14
Indoor Unit Power Supply Connections
Outdoor Unit: Power Connections
Plenum Heater: Power Connections
Plenum Heater: Signal Connections 14 Indoor Loop Circulator Pump Wiring 14
Disable Switch (field installed)
Control Transformer
BACnet Connections
Setpoint Control (Hydronic Control) Connections
Setpoint Control: Aux. Connections15
Outdoor Unit: Signal Connections
Domestic Hot Water (Desuperheater)
Air Thermostat Connections
Aquastat Connections (Optional)
002071CDG - Typical GEN2 Thermostat Connections
002375QSS - AltSource Tanks: Getting Started
002067CDG - Typ. Heating Only Zone Wiring (Setpoint)
002069CDG - Typ. Htg. Only Zone Wiring (Hardwired) 21
Piping
Indoor Loop Water Lines
Domestic Hot Water (Desuperheater) Connections
002305PDG - Typical Piping Connections - ATF
002366PDG - Recommended Buffer Tank Piping
002367PDG - Auxiliary Boiler Piping - Multiple Onits - 20
000530PDG - Typical Zone Types
001055PDG - Connection to On-Demand DHW Tank
000970PDG - Desup. Conn. to DHW Pre-Heat Tank
Outdoor Unit Line Set
Line Set Interconnect Tubing
Indoor Unit Connections
Outdoor Unit Connections
Filter-Dryer
Pipe Insulation
Silver Soldering Line Sets
Pressure Testing
Charging the System
002250CDG - Typical Line Set Connections

— · · —	
Ductwork	24
	. 34
Indoor Unit Blower Motor	
Air Duct Zoning	34
Duct Systems - General	34
Duct Systems - Grill Layout	21
Thermostat Location	
Plenum Heater	
002249PDG - Typical Duct & Condensate Connections	35
Duct Sizing Guide	36
Operation	27
BACnet Control	37
Air Thermostat Operation	37
Hydronic Temperature Control	37
1. Hydronic Heating: Setpoint Control	
Controlle Realing. Selpoint Control	
Setpoint Control Method 1 - Indoor Loop (ICR)	37
Setpoint Control Method 2 - External HTS/CTS	37
Top Up S1 Function	38
Summer Setback	38
Outdoor Dooot	
Outdoor Reset	
2. Hydronic Heating: Signals Control	39
PC Application (PC App)	. 40
LCD Interface & Menus	52
	. 52
BACnet Interface	. 54
Startup Procedure	58
Startup Record	60
	00
Deutine Meintenenee	
Routine Maintenance	. 61
Troubleshooting Guide	. 62
Repair Procedures	75
	. 75
Pumpdown Procedure	75
General Repair Procedure	
Vacuuming & Charging Procedure	75
Compressor Replacement Procedure	
Outdoor Fan Replacement Procedure	
Control Board Replacement Procedure	
LCD Interface (Display) Board Replacement Procedure	78
Model Specific Information	. 79
Shipping Information	79
Refrigerant Charge	
Indoor Loop Flow Rates	79
Operating Temperature Limits	79
Sound Levels (dBA)	
	79
Pressure Dron Data	79
Pressure Drop Data	79 80
Standard Capacity Ratings	79 80 80
Standard Capacity Ratings Performance Tables	79 80 80 81
Standard Capacity Ratings Performance Tables Electrical Specifications	79 80 80 81 89
Standard Capacity Ratings	79 80 80 81 89
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications	79 80 80 81 89 89
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data	79 80 81 81 89 89 90
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60)	79 80 81 89 89 90 91
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60)	79 80 81 89 89 89 90 91 92
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60)	79 80 81 89 89 90 91 92 93
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60)	79 80 81 89 89 90 91 92 93
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/330-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60)	79 80 81 89 90 91 92 93 94
Standard Capacity Ratings Performance Tables Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60)	79 80 81 89 89 90 91 92 93 94 95
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60)	79 80 81 89 89 90 91 92 93 94 95 96
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams.	79 80 81 89 90 91 92 93 94 95 96 97
Standard Capacity Ratings Performance Tables Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode	79 80 81 89 90 91 92 93 94 95 96 97 98
Standard Capacity Ratings Performance Tables Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode.	79 80 81 89 90 91 92 93 94 95 96 97 98 99
Standard Capacity Ratings Performance Tables Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode.	79 80 81 89 90 91 92 93 94 95 96 97 98 99
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode	79 80 81 89 90 91 92 93 94 95 96 97 98 99 100
Standard Capacity Ratings Performance Tables Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode.	79 80 81 89 90 91 92 93 94 95 96 97 98 99 100
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode.	79 80 80 81 89 90 91 92 93 94 95 96 97 98 99 100
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode	79 80 80 81 89 90 91 92 93 94 95 96 97 98 99 100
Standard Capacity Ratings Performance Tables. Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode. Dimensions. Appendix A: Control Board Description.	79 80 80 81 89 90 91 92 93 94 95 96 97 98 99 100 101
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode.	79 80 80 81 89 90 91 92 93 94 95 96 97 98 99 100 101
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode. Dimensions. Appendix A: Control Board Description	79 80 80 81 92 93 94 95 95 99 100 101 109
Standard Capacity Ratings Performance Tables. Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode. Dimensions. Appendix A: Control Board Description.	79 80 80 81 92 93 94 95 95 99 100 101 109
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Dimensions. Appendix A: Control Board Description Appendix B: USB Driver Installation Appendix C: PC App Installation (Win11)	79 80 80 81 89 90 91 92 93 94 95 96 97 100 101 109 1113
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode. Dimensions. Appendix A: Control Board Description	79 80 80 81 89 90 91 92 93 94 95 96 97 100 101 109 1113
Standard Capacity Ratings Performance Tables. Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode. Dimensions. Appendix A: Control Board Description Appendix B: USB Driver Installation (Win11) Appendix D: PC App Installation (Win10)	79 80 80 81 89 93 93 93 94 95 96 97 100 101 101 113 114 115
Standard Capacity Ratings Performance Tables Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Dimensions. Appendix A: Control Board Description Appendix B: USB Driver Installation Appendix C: PC App Installation (Win11)	79 80 80 81 89 93 93 93 94 95 96 97 100 101 101 113 114 115
Standard Capacity Ratings Performance Tables. Electrical Specifications Plenum Heater Electrical Specifications Indoor Airflow Data Wiring Diagram (208/230-1-60) Electrical Box Layout (208/230-1-60) Wiring Diagram (208-3-60) Electrical Box Layout (208-3-60) Wiring Diagram (460-3-60) Electrical Box Layout (460-3-60) ACE (Outdoor Unit) Wiring Diagrams. Refrigeration Circuit - Air Heating Mode. Refrigeration Circuit - Air Cooling / Defrost Mode. Refrigeration Circuit - Hydronic Heating Mode. Dimensions. Appendix A: Control Board Description Appendix B: USB Driver Installation (Win11) Appendix D: PC App Installation (Win10)	79 80 80 81 89 90 91 92 93 94 95 97 98 99 100 101 109 1113 114 115 116

Tables & Documents

	Table 1 - Heat Pump Size vs. Heated Area	8
Tables	Table 2 - Plenum Heater Sizing	
	Table 3 - Power Supply Connections	
	Table 4 - Outdoor Unit Power Supply Connections	
	Table 5 - Plenum Heater Signal Connections	
	Table 6 - Indoor Loop Circulator Connections	
	Table 7 - Control Transformer	15
	Table 8 - BACnet Connections	
	Table 9 - Setpoint Control: Aux. Connections	15
	Table 10 - Outdoor Unit Signal Connections	
	Table 11 - Air Thermostat Connections	16
	Table 12 - Aquastat Connections (Optional)	
	Table 13 - Buffer Tank Size	
	Table 14 - Line Set Sizing	
	Table 15a - 3-way Service Valve Tooling	
	Table 15b - 3-way Service Valve Torques	
	Table 16 - Extra Charge for Model Sizes 25-45	
	Table 17 - Extra Charge for Model Sizes 55-75	
	Table 18 - Number of Air Grills	
	Table 19 - Duct Sizing Guide	
	Table 20 - Typical Temperature Setpoints	
	Table 21 - Maximum Output Temperature	
	Table 22 - BACnet Objects - Control Signals (Read/Write) Table 23 - BACnet Objects - Operation Mode Description (Read Only)	
	Table 23 - BAChet Objects - Operation Mode Description (Nead Only)	
	Table 24 - DAChet Objects - Data (Read Only)	
	Table 26 - BACnet Objects - Alarm Descriptions (Read Only)	
	Table 27 - BACnet Objects - Limits Description (Read Only)	
	Table 28 - BACnet Objects - Fault Descriptions (Read Only)	
	Table 29 - Shipping Information - Indoor Unit	79
	Table 30 - Shipping Information - Outdoor Unit	
	Table 31 - Refrigerant Charge	
	Table 32 - Indoor Loop Flow Rates	
	Table 33 - Operating Temperature Limits	
	Table 34 - Outdoor Unit Sound Levels (dBA)	79
	Table 35 - Indoor Unit Sound Levels (dBA)	79
	Table 36 - Hydronic Loop Pressure Drop Data	80
	Table 37 - Standard Capacity Ratings - Air Heating (60 Hz)	80
	Table 38 - Standard Capacity Ratings - Air Cooling (60 Hz)	80
	Table 39 - Standard Capacity Ratings - Hydronic Heating (60 Hz)	80
	Table 40 - ATF-Series Electrical Specifications	
	Table 41 - Plenum Heater Electrical Specifications	
	Table 42 - Airflow Range for Stage 2 (Full Load)	90
	Table 43 - Airflow Range for Stage 1 (Part Load)	90
	Table 44 - Airflow Range for Stage 3 (Auxiliary)	
	Table 45 - Airflow Range for Fan Recirculation	
	Table 46 - Airflow Range for Emergency	
	Table 47 - Indoor Airflow Reduction for Outdoor Temperature	
	Table A1 - Control Board Connector Descriptions (Top)	
	Table A2 - Control Board Connector Descriptions (Left Side)	
	Table A3 - Control Board Connector Descriptions (Bottom) Table A4 - Control Board Connector Descriptions (Right Side)	
	Table A4 - Control Doard Connector Descriptions (Right Orde)	
Documents	001915INF - Internal Plenum Heater Installation	11
Documento	002071CDG - Typical Thermostat Connections to GEN2 Board	
	002304CDG - Typical ATF Outdoor Unit, Auxiliary Heat, and Indoor Circulator Wiring	
	002375QSS - AltSource Tanks: Getting Started	
	002067CDG - Typical Zone and Auxiliary Wiring with GEN2 Setpoint Control (Heating Only)	20
	002069CDG - Typical Zone and Auxiliary Wiring with GEN2 Hardwired Option (Heating Only)	
	002305PDG - Typical Piping Connections - ATF	23
	002366PDG - Recommended Hydronic Buffer Tank Piping	
	002528PDG - Buffer Tank Piping - Multiple Units	
	002367PDG - Auxiliary Boiler Piping	
	000530PDG - Typical Zone Types for Hydronic Applications	
	001055PDG - Single Unit Connection to On-Demand DHW Pre-Heat Tank	
	000970PDG - Desuperheater Connection to DHW Pre-Heat Tank 002384PDG - Desuperheater Connection to DHW Pre-Heat Tank - Multiple Units	
	002250CDG - Typical ATA/ATF to Outdoor Unit Line Set Connections	
	002249PDG - Typical Duct & Condensate Connections 001956SCH - ATF-Series Schematic Diagram 208/230-1-60	
	001950SCH - ATF-Series Schematic Diagram 208/230-1-00	
	001957 ELB - ATF-Series Electrical Box Diagram 208/250-1-00	03
	0019505CFF ATF-Series Schematic Diagram 208-3-60	95 94
	001959ELD - ATF-Series Electrical Box Diagram 200-3-00	
	001961ELB - ATF-Series Electrical Box Diagram 460-3-60	
	001951SCH - ACE Outdoor Unit Schematic Diagram	
	002014SCH - ACE 4-Fan Outdoor Unit Schematic Diagram	
	001844RCD - ATF-Series Refrigeration Circuit - Air Heating Mode	
	001845RCD - ATF-Series Refrigeration Circuit - Air Cooling / Defrost Mode	
	001846RCD - ATF-Series Refrigeration Circuit - Hydronic Heating Mode	

General Overview

The **ATF-Series** heat pump is an air source heat pump that can heat or cool via a forced air duct system, as well as heat water for hydronic application like in-floor heating.

Being an air source heat pump, it does not require a ground loop, instead using an outdoor fan unit to exchange heat with the outdoor air. Unlike most air source outdoor units on the market, this outdoor unit contains only an air coil, ECM hub motor fan, expansion valve (EEV), and outdoor temperature sensor. The remaining components, including the compressor and all electronics, are located in the indoor unit. This has several advantages: minimal installation and service work must be performed outdoors, important components are in the conditioned space for longevity, antifreeze is not required in the hydronic loop, no electric compressor heater is required, and heating domestic hot water is possible (through a desuperheater circuit) since water lines are inside and will never freeze.

The air heating and cooling functions are controlled by a standard 3H/2C 24V room thermostat. The hydronic heating control is done by an internal routine that maintains the buffer tank temperature, without external sensors ('Setpoint Control'). BACnet or an external aquastat can also be used.

In additional to the main hydronic water heating function, there is a double-wall desuperheater for pre-heating domestic hot water with ~5% of the heat pump's capacity. This function is only active when the heat pump is running for space heating or cooling purposes. An energy-efficient bronze head ECM circ pump for the desuperheater circuit is built in, along with a temperature control to turn the pump off when the DHW temperature reaches 140°F (60°C).

A two-stage scroll compressor is standard. The outdoor air coil is e-coated for corrosion protection, and the coaxial hydronic heat exchanger is copper / steel with optional CuNi inner tube available. The cabinet is powder coated galvanized sheet metal. Control is overseen by the Nordic GEN2 programmable control board, which has many advanced features like laptop connectivity via the free PC App software, data logging & graphing, and real time readout from electronic temperature & pressure sensors. A premium electrically commutated (ECM) blower motor with adjustable airflow is standard.

1. Air Heating Mode

In air heating mode, heat is extracted from the outdoor air and transferred to the air duct system. This causes the air coil to eventually frost up to the point that a defrost cycle is required; refer to the **Defrost Operation** section below. Refrigerant flow is controlled by the EEV located in the outdoor unit while the EEV in the indoor unit is fully open.

If the outdoor temperature is above $34^{\circ}F(1^{\circ}C)$, the outdoor unit fan starts and stops when the heat pump starts and stops. If the temperature is below $34^{\circ}F(1^{\circ}C)$, the outdoor fan will remain on at a very slow speed when the heat pump is off to minimize the chance of a fan freeze up, and to prevent snow from entering the unit. The outdoor fan will slowly ramp up to the required speed upon start.

Auxiliary Air Heat

An electric resistance plenum heater, placed inside the heat pump but ordered separately, is **required**. This is because the capacity of air source heat pumps fall as the outdoor temperature drops and the heating load increases. This output reduction can be seen in the performance charts later in this manual, and is common to all air source heat pumps. The plenum heater will be sized to satisfy all of the heat load if the outdoor temperature falls below the minimum for heat pump operation: -7°F (-22°C).

A second important function of the plenum heater is to provide heat to the indoor air steam during defrost mode (described below), to **avoid cold air blowing into the space**.

The room air thermostat controls when the plenum heater is activated, normally due to a drop in the room temperature. The heater is installed inside the indoor unit, unless the blower is installed in the side discharge position, in which case it is installed in the air discharge ductwork outside the heat pump.

Defrost Operation

The heat pump has an advanced defrost control algorithm, using outdoor temperature and suction pressure to determine when a defrost cycle should occur and how long it should be. Precise fan control allows the defrost heat to rise quickly and then be maintained at a setpoint for quick defrosting.

The outdoor unit has a unique physical arrangement for combatting the ice build up that is a common problem with air source heat pumps. The air coil is installed on a 15° angle and the area below the coil is open (no drip tray). The angle causes the melting frost/snow to run down the back of the coil to a single point of runoff rather than along the entire bottom side of the coil. It is not possible for runoff to remain between coil pipes and re-freeze between them, which a common cause of air coil failure in air source heat pumps.

2. Hydronic (Water) Heating Mode

In hydronic heating mode, the heat pump heats hot water in the buffer tank. EEV, outdoor fan, and defrost operation are the same as in air heating mode.

Auxiliary Hydronic Heat

Optionally, hydronic auxiliary heat may be installed, to keep the floor warm no matter what the outdoor temperature. This can consist of electric elements in the buffer tank, or an existing boiler may be retained and piped in parallel with the heat pump.

Auxiliary hydronic heat will be controlled by the heat pump via dry contacts. Buffer tanks with elements rated for space heating duty are available as accessories.

3. Air Cooling Mode

In air cooling mode, heat is extracted from the air duct system and rejected to the outdoor air. Refrigerant flow is controlled by the EEV located in the indoor unit while the EEV in the outdoor unit is fully open. There is no defrost cycle in cooling mode.

The outdoor fan is controlled based on the discharge pressure and will slowly ramp up to the required speed when the system starts. During operation, the fan speed will automatically adjust up or down to in order to maintain the discharge pressure setpoint value. Two stage units will drop down to the first stage to reduce the discharge pressure at very high outdoor temperatures.

Factory Options

Looking at the main service panel, the indoor unit can be ordered as a left or right hand air return from the factory. This must be specified at time of order as the physical construction of the two configurations is different. See Installation Basics chapter.

Mode and Priority Selection

The heat pump can be set to **Air** or **Hydronic** priority. Units are shipped set up for air priority. This is often a good setting, since drops in the household air temperature normally occur sooner if there is a lag in the ducted air system than if there is a drop in the hydronic water temperature.

However, if there is only an auxiliary air plenum heater installed (no hydronic auxiliary heat), the heat pump can be set to **hydronic priority**, so that the heat pump will heat in-floor water first and any shortfall in heating capacity on cold days will be covered by the air plenum heater.

Whenever there is a stage 1 demand from both the air thermostat and aquastat, the unit steps up to stage 2 of the priority mode in order to satisfy the priority demand quickly and get to the non-priority mode. If this functionality was not present, the unit could run in stage 1 of the priority mode (67% compressor capacity) for a long time with a 'call waiting', allowing the overall supply of heat to the building to fall behind the load.

SINGLE MODE OPERATION:

If there is only one mode being called for, the unit operates in the mode and stage that is called for.

SIMULTANEOUS DEMANDS - AIR PRIORITY:

If there is a call for:

- both stage 1 air and stage 1 hydronic
- both stage 2 air and stage 1 hydronic
- both stage 1 air and stage 2 hydronic
- both stage 2 air and stage 2 hydronic

The unit operates in air mode in stage 2.

SIMULTANEOUS DEMANDS - HYDRONIC PRIORITY:

If there is a call for:

- both stage 1 air and stage 1 hydronic
- both stage 2 air and stage 1 hydronic
- both stage 1 air and stage 2 hydronic
- both stage 2 air and stage 2 hydronic

The unit operates in hydronic mode in stage 2.

Air Source Heat Pumps

Since it is harder to extract heat from colder outdoor air, any air source heat pump will have its lowest heating capacity on cold days when building heat load is the highest. It is not generally possible to oversize an air source heat pump to cover 100% of the coldest day heat load, since this would mean excessive compressor short-cycling during moderate outdoor weather when heat pump capacity is much higher and heat load is much lower, and also poor dehumidification during cooling mode.

Therefore, it should be expected that **any air source heat pump will need auxiliary heat on the coldest days.** An air side plenum heater is **required**; see reasons in previous chapter. Hydronic side auxiliary can also be implemented (tank elements or auxiliary boiler).

Heat Pump Sizing

The table shows the size of home each air source heat pump model size is generally suitable for, in northern climates.

TABLE 1 - Heat Pump Size vs. Heated Area					
Model sq.ft. m ²					
45	1,400	130			
55	2,000	185			
65	2,600	240			
75	3,100	290			

This is an **estimate** of which unit size is required for a *typical* two-level home (main level and below grade basement) with R-20 walls, R-40 ceiling and average size and number of windows. The Heated Area is the area of the main level. The table accounts for a basement the same size as the heated area.

It is highly recommended that a heat loss/gain analysis be performed by a qualified person with software using the CSA F-280 or Manual J methods before selecting a heat pump size. The analysis will result in a heat load for the coldest day, which is influenced by, for example, the number of levels, the size of the windows, the orientation of the home, attached garage, bonus rooms, walk-out basement, and coldest outdoor temperature for the region.

In northern climates, a heat pump model size can be selected by matching the calculated heat load to the heat pump's heating capacity at an outdoor temperature of **35°F** (**1.7°C**) and an indoor water temperature of **105°F** (**40.5°C**) for concrete infloor heating or **120°F** (**49°C**) for other heating types. These numbers can be found in the detailed performance tables in the **Model Specific Information** section later in this manual. This sizing will result in a good compromise between covering as much of the cold weather heat load as possible without utilizing backup heat, while minimizing excessive cycling (turning on and off frequently) during moderate outdoor temperatures.

It should be noted that sizing an air source heat pump is always a compromise between covering coldest-day heat load and minimizing cycling due to over-capacity in warm weather.

In cooling dominant climates, the heat pump should be similarly sized, by matching the calculated cooling load to the standard capacity rating at an outdoor temperature that matches the local maximum outdoor temperature. The difference here is that it is necessary to cover all of the cooling load, since there is no backup cooling. Even in northern heating dominant climates, it should be ensured that 100% of the cooling load will be covered when sizing the heat pump.

Plenum Heater Sizing

The required plenum heater is available as an accessory in 5, 7, 10, 15 and 20kW sizes. Choose a size that covers **100% of the coldest day heat load**, according to the heat loss analysis mentioned in the last section. If that is not available, use the following recommendation:

TABLE 2 - Plenum Heater Sizing				
Model	Plenum H	Heater Size (kW)		
woder	Recommended	Internally Possible		
45	10	5, 7, 10		
55	10	5, 7, 10, 15, 20		
65	15	5, 7, 10, 15, 20		
75	20	5, 7, 10, 15, 20		

Two styles of plenum heater are available; the first is for internal installation (inside the indoor unit). Note limit for size 45 in above table.

The second has a wider element profile for installation outside the unit, in the ductwork. If field-installing the fan in the convertible side discharge position, this type of plenum heater will need to be used.

Sample Bill of Materials

Although not exhaustive, following is a list of materials needed for a typical installation:

FROM MARITIME GEOTHERMAL

- ATF SERIES HEAT PUMP (L OR R RETURN)
- W/ACE OUTDOOR UNIT
- PLENUM HEATER __ kW
- AIR THERMOSTAT (WIFI OR STD)
- SHIELDED 18-8 WIRE FOR OUTDOOR UNIT
- BUFFER TANK W/ELEMENTS __kW

OPTIONAL FROM MARITIME GEOTHERMAL

- ANTI-VIBRATION PAD FOR UNDER UNIT
- SOUND JACKET
- COMPRESSOR SECURE START
- ELECTROSTATIC (CLEANABLE) AIR FILTER

DUCTWORK

- OUTLET PLENUM ADAPTER W/ FLEXIBLE COLLAR
- RETURN AIR ADAPTER W/ FLEXIBLE COLLAR
- FIBREGLASS INSULATION (FOR NOISE, IF REQ'D)
- TRUNK DUCT W/ JOINERS (IF NOT EXISTING)
- 6" ROUND DUCT W/ADAPTÈRS (IF NOT EXISTING)
- ALUMINUM TAPE
- SHEET METAL SCREWS

DHW:

- PREHEAT TANK, 40 OR 60 GAL
- 1/2" COPPER PIPE
- 1/2" FITTINGS, BALL VALVES, BOILER DRAINS, CV

ELECTRICAL

- HEAT PUMP SERVICE WIRE: 6-2/3 OR 8-2/3
- PLENUM HEATER SERVICE WIRE
- 14-2 OUTDOOR RATED WIRE W/ DISCONNECT SWITCH FOR OUTDOOR UNIT
- HEAT PUMP BREAKER
- PLENUM HEATER BREAKER
- THERMOSTAT WIRE 18-8
- THERMOSTAT WIRE 18-3 (PLENUM HEATER)
- FORK TERMINALS FOR TSTAT WIRE (6)
- CONDENSATE PUMP & HOSE (IF REQUIRED)

REFRIGERATION

- 1/2" & 7/8" (OR 3/8" & 3/4") ACR TUBING
- PIPE ISULÀTION
- EXTRA R410A REFRIGERANT FOR LINESETS >25 FT

HYDRONIC ZONES

- CIRCULATOR: HEAT PUMP TO TANK
- 1" PIPE & FITTINGS: HEAT PUMP TO TANK
- ZONE CIRCULATOR(S)
- ZONE TRANSFORMER & CIRC CONTACTOR
- ZONE VALVES (IF NOT INDIVIDUAL PUMPS)
- IN-FLOOR PIPING
- ZONE THERMOSTATS
- RELAYS OR ZONE CONTROLLER
- ZONE SUPPLY & RETURN HEADERS:
- 1" COPPER PIPE & FITTINGS • PIPE & FITTINGS TO ZONES
- EXPANSION TANK
- EXPANSION TANK
- 2" STYROFOAM INSUL. (IF PAD NOT PURCHASED)

Unpacking the Unit

When the 2-piece heat pump reaches its destination it should be unpacked to determine if any damage has occurred during shipment. Any visible damage should be noted on the carrier's freight bill and a suitable claim filed at once.

Indoor Unit Placement

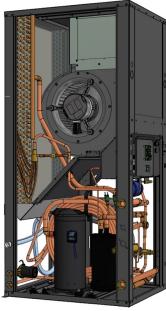
Ducted or forced air heat pumps should be centrally located in the home with respect to the conditioned space. This provides the best in economy and comfort and usually can be accomplished in harmony with the design of the home. A heating system cannot be expected to produce an even temperature throughout the building when it is located at one end of the structure and the heated or cooled air is transmitted with uninsulated metal ductwork.

If possible the front access panel and side access panel opposite the air return should remain clear of obstruction for a distance of **2 ft (0.7 m)** to facilitate servicing and general maintenance. No access is required on the back side. Ensure the unit is level to eliminate any possible condensate draining issues.

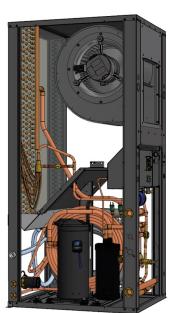
The heat pump comes equipped with an air filter rack which can be installed with the removable end (where the filter is inserted) on either side to facilitate changing the filter. Be careful not to run piping in front of the filter rack access cover, since access is required in order to change the air filter.

Raising the indoor unit off the floor a few inches is generally a good practice since this will prevent rusting of the bottom panel of the unit and deaden vibrations. An anti-vibration pad, available as an accessory, or a piece of 2" styrofoam should be placed under the unit.

Placement of Tanks


See **ATF System Description** and **Piping** chapters for example placements of the hydronic buffer tank and domestic hot water preheat and final tanks.

Indoor Unit Air Outlet Orientation


The indoor unit has a field configurable blower position, resulting in top or side air discharge. Its default location from the factory is in the top of the unit, providing a "ninety" in the airflow. It can easily be placed in the side of the unit for straight through airflow. Note that if this is done, plenum heater will need to be placed in ductwork outside unit.

To switch the location of the fan outlet:

- 1. Turn the power of to the unit.
- 2. Remove the screw that holds the side access panel in place and remove the access panel by pulling up on the handle and then outward from the bottom.
- 3. Disconnect the two wire harnesses and ground wire from the fan motor.
- 4. Repeat step 2 for the access panel with the fan mounted in it. Set the assembly on the floor.
- 5. Disconnect the plenum heater extension from the fan housing and from the access panel.
- 6. Mount the fan housing directly to the access panel.
- 7. Install the fan/panel in the new location and secure with the screw.
- 8. Reconnect both harnesses and ground wire.
- 9. Install the remaining access panel and secure with the remaining screw.

BLOWER IN TOP DISCHARGE POSITION (DEFAULT)

BLOWER IN SIDE DISCHARGE POSITION

Air Return Orientation

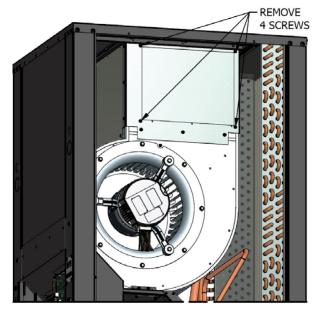
The heat pump can be ordered as left or right air return from the factory. This must be specified at time of order as the physical construction of the two configurations is different. Refer to the **Dimensions** section toward the end of this manual for physical dimensions of the units.

LEFT RETURN

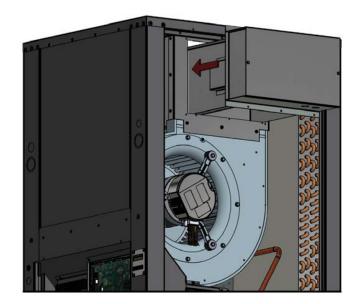
RIGHT RETURN

Plenum Heater Installation

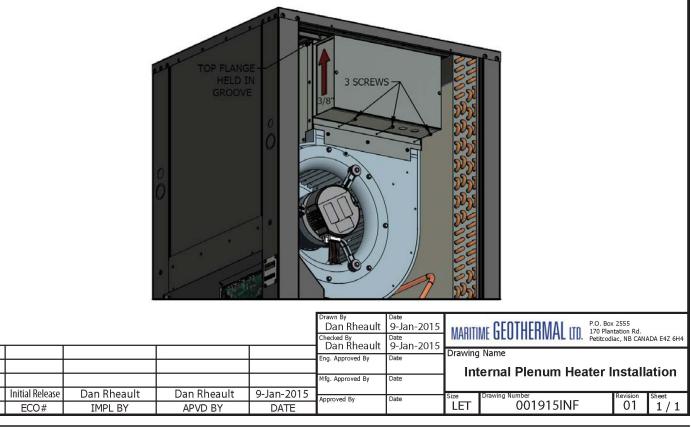
Be sure to specify the type of installation anticipated, since the plenum heater models are different for internal or external (duct) installation.


1. Blower in top discharge position: Plenum heater is mounted inside heat pump cabinet. See diagram on following page. Remove the screws from the cover plate, remove the cover plate, and place the plenum heater in the cutout. Slide it up and secure the bottom flange with three cover plate screws. Use the indicated knockouts on the heat pump cabinet for electrical connections.

When installation is complete, check the appropriate box of the label on the unit door to indicate which size heater was installed.


2. Blower in side discharge position: Plenum heater should be installed in the air discharge duct outside the heat pump cabinet in a manner that allows all of the airflow to pass through it to prevent any hot spots in the heater elements. Ensure that the plenum heater is mounted in an approved position as per its instructions.

Internal Plenum Heater Installation R, TF, ATA, ATF, DX, DXTF Series


1. Remove four screws as shown, and remove blank panel.

2. Slide plenum heater into cutout until heater flange is flush with blower.

3. Slide plenum heater UP approximately 3/8". Top flange of heater is held in top groove of blower assembly and requires no fasteners. Install 3 screws through bottom flange of heater through pre-punched holes in heater and blower assembly.

01

REV

Outdoor Unit Placement

The ACE unit must be placed outdoors, with the fan pointing away from the building.

Since there is no drip tray and defrost condensate will drip straight down under the unit, it should be mounted where **moisture or ice under the unit will not be considered to be unsightly**, as might be the case on a paved walkway to the front door for example. (Note that the lack of a drip tray is an intentional design feature that dramatically improves longevity of the outdoor heat exchanger.)

For ACE-65/75, there is a detachable cover for the piping and wiring which automatically places the unit **12 inches (30 cm)** away from the building, which is the recommended spacing. If necessary, the unit can be placed **8 inches (20 cm)** from the building: the cover can be shortened by cutting the tabs and removing one section. Be aware that if mounted at less than 12 inches from building, there is a risk of frost forming on the wall during defrost under certain conditions. Be sure there are no obstructions around the perimeter of the back, so that return airflow is unimpeded.

There should be little or no obstruction in the fan (front) direction for at least **10 ft (3 m)**, and preferably **16 ft (5 m)**, otherwise airflow and therefore overall performance will be reduced.

In addition, there should be at least **two feet (0.6 m)** of clearance on the electrical box and refrigeration piping side of the unit to facilitate servicing and general maintenance.

The outdoor unit **must be bolted or screwed down** to prevent a tipping hazard. See next section.

Note that no field installed filter-dryer is required.

IMPORTANT NOTE: The line set between the indoor and outdoor units must not exceed 70 ft (21 m) in length.

Outdoor Fan Speed Reduction

Should fan noise be a concern, for example if the outdoor unit is mounted near a frequently open window, the outdoor fan speed can be reduced (up to a maximum of 25%). This should only be done if necessary, since a small loss in efficiency will result.

The fan speed can be reduced via the LCD (see LCD Interface & Menus section) or PC App (see PC Application section).

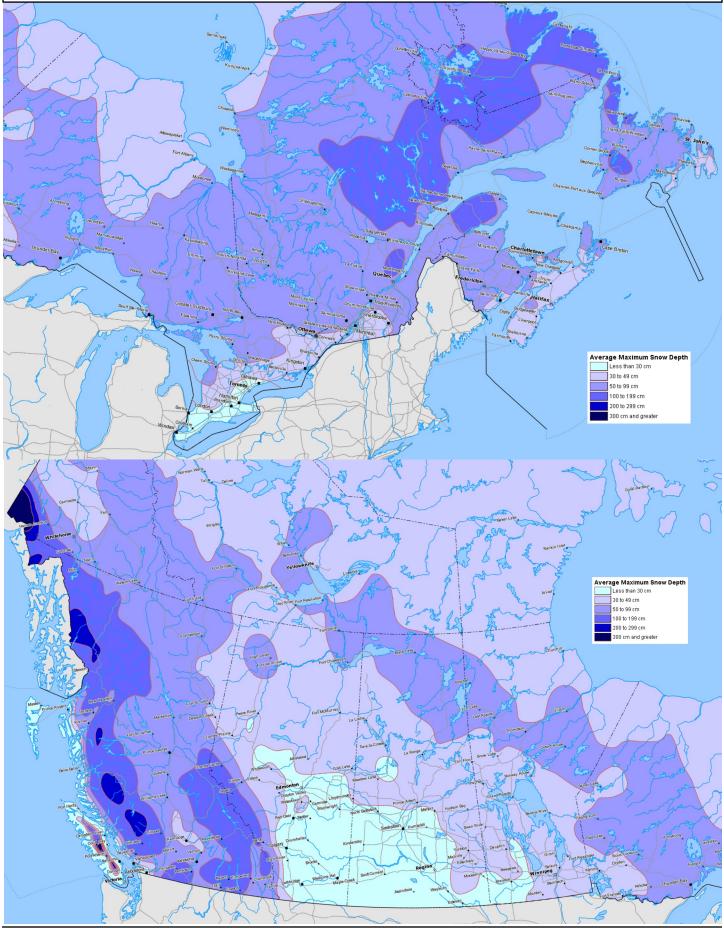
Outdoor Unit Mounting Height

The outdoor unit must remain clear of snow and ice at all times. Good performance depends on good airflow, which of course cannot be achieved if the unit is buried in snow and refrozen defrost condensate.

There are several ways to accomplish this. First, look up how much snowfall is expected in your area, either from local knowledge or weather data. The snowfall map included on next page can be used as a rough guide for Canada.

- If there is less than ~4" (10 cm) of snow accumulation expected, the unit could be mounted directly on a concrete pad. This is **not recommended** in cold climates, since ongoing care would be required to ensure re-frozen condensate does not build up under unit.
- The unit can be mounted on angle brackets attached to the side of a building. Be sure to adhere to the minimum clearance requirement of 8-12" (20-30 cm), and use brackets designed for twice the unit weight.
- Two leg kits which add either 15" (38 cm) or 30" (76 cm) of additional height are available as an accessory. For ATWC-65 and larger which use a larger outdoor unit, only the shorter leg kit is available.

To attach the legs:


ACE-25/45/55 - first remove the three bolts with flat washers that hold each foot plate in place. Leaving the foot plate in place on the inside of the cabinet panel, slide the leg over the outside of the panel and re-install the three bolts and flat washers.

ACE-65/75 -slide the leg over the outside of the two existing cabinet legs and affix with the kit's three SS bolts and flat washers.

Whether or not a foot kit is used, be sure to mount the unit using the 4 rubber grommets included with the unit, to dampen any vibration. The unit must be fastened to its mounting surface with four bolts through these grommets to prevent

Average Maximum Snow Depth - Canada (1979-1997) Source: Natural Resources Canada

Indoor Unit Power Supply Connections

Power supply for the heat pump from the breaker panel is supplied to the indoor unit. The unit has a concentric 1.093" / 0.875" knockout for main power supply connection to the electrical box. There are also two 7/8" knockouts and a 1/2" opening with plastic grommet (grommet hole is 3/8") for connections to the air thermostat, indoor loop circulator, optional aquastat, and power and signal connections to the outdoor unit.

A schematic diagram (SCH) and electrical box layout diagram (ELB) can be found on the electrical box cover of the unit as well as in the **Model Specific Information** section of this manual. The Electrical Tables in the **Model Specific Information** section contain information about the wire and breaker

IMPORTANT NOTE: A properly qualified electrician should be retained for all connections to the heat pump and associated controls. The connections to the unit MUST CONFORM TO LOCAL CODES.

IMPORTANT NOTE FOR 3-PHASE UNITS: If on startup compressor is noisy and not pumping, reverse L1 and L2 supply wires.

TABLE 3 - Power Supply Connections			
Line	Description Voltages		
L1	Line 1	All	
L2	Line 2	All	
L3	Line 3	3-phase only	
N	Neutral	208/230-1-60*, 208-3-60*, 460-3-60, 380-3-50	
GND	Ground	All (connect to ground lug)	
* Only required if connecting 115VAC circulators.			

Outdoor Unit: Power Connections

The ACE outdoor unit is powered from the indoor unit. The power supply for the ACE unit is 208 to 277VAC, 50/60Hz. The ATF and ACE units have matching terminal strips for these connections. Use a two conductor, minimum 14ga **outdoor rated cable** for this connection. Refer to diagram.

TABLE 4 - Outdoor Unit Power Supply Connections				
Line	Description			
L1	Supply line			
L2	Supply line			
GND	GND Ground			

Use a 2-conductor outdoor rated 14ga cable.

IMPORTANT NOTE: According to most codes, a disconnect switch visible and/or reachable from the outdoor unit must be installed in the power supply cable. If the switch has fuses or breakers they must be no more than 10A.

OUTDOOR DISCONNECT SWITCH IS A SAFETY DEVICE ONLY. Turn off breaker to indoor unit before servicing to avoid costly damage to electronic control board.

Plenum Heater: Power Connections

Auxiliary air heat will usually be provided by an electric duct heater (plenum heater). These are available as accessories in 5, 7, 10, 15, and 20 kW sizes, and are installed as previously noted in this manual. The plenum heater will have its own breaker and power supply wire. The Electrical Tables in the **Model Specific Information** section contain information about the size of wire for the connections, as well as the recommended breaker size.

Plenum Heater: Signal Connections

The ATF unit has two dry contacts to control the 2 stages of the plenum heater. These dry contacts can also be used to control other types of auxiliary air heat. Note that dry contacts are intended to activate equipment that has its own 24VAC transformer; if equipment does not have its own transformer, one will need to be installed in an external electrical box.

Connect the terminals on the ATF's terminal strip to the matching terminals on the plenum heater's control board using an 18-3 cable.

TABLE 5 - Plenum Heater Signal Connections				
Signal	Description			
СР	Common			
1	Dry contact for auxiliary heat stage 1			
2	Dry contact for auxiliary heat stage 2			
Use a 3-conductor 18ga cable.				

Indoor Loop Circulator Pump Wiring

The indoor unit has provisions for connecting the indoor circulator pump (between the heat pump and buffer tank) so that it will be turned on whenever the compressor operates. Connect the circulator pump module to the appropriate two terminals (115V & 115/230 or 230V & 115/230) of the terminal strip marked **Indoor Circulator Pumps**. Ground wires should be connected to the ground lug in the electrical box. Ensure that the total current draw does not exceed the value indicated on the label in the heat pump electrical box.

For **460VAC models**, only 277VAC circulators may be powered directly from the heat pump. If other voltage circulators are used, they must be powered using an external contactor actuated by the ICR terminal on the left side of the control board and the C (24V ground) terminal.

TABLE 6 - Indoor Loop Circulator Connections				
Signal	Description			
115V	15V Connection for 115V circulator			
115/230	Connection for 115V or 230V circulator			
230V	230V Connection for 230V circulator			
Use a 2-conductor 14ga cable.				

Disable Switch (field installed)

A switch to disable demand from the control system may be installed. On control board, jumper COM_IN to GND, and toggle 12VDC to IN_SPARE to disable. See the main wiring diagram in the Model Specific Information section.

Control Transformer

The low voltage controls, including the control board, are powered by a 100VA class II transformer. 208/230-1-60 and 208-3-60 models have a resettable breaker on the secondary side for circuit protection. If the breaker trips, locate and correct the problem and then reset the breaker by pressing in on it.

All other voltage models have primary and secondary fuses for circuit protection.

IMPORTANT NOTE: For 208/230VAC-1-60 units, if connecting to 208VAC power supply move the red wire connected to the 240 terminal of the transformer to the 208 terminal of the transformer.

TABLE 5 - Control Transformer					
Voltage	Low Voltage Circuit Protection				
(1) 208/230-1-60	Resettable breaker on transformer				
(2) 208-3-60					
(4) 460-3-60					
(6) 220-1-50	Primary / Secondary fuses				
(7) 380-3-50					

BACnet Connections

If using BACnet for external control of heating/cooling demand and/or monitoring of status, use a shielded twisted pair to the connector at the bottom left of control board. There is an optional termination jumper located above the connector.

See the **BACnet Interface** section for details.

TABLE 8 - BACnet Connections				
Line	Description			
Α	Communication +			
В	Communication -			
GND	Ground			
Use a shielded twisted pair cable.				

Airflow Reduction for Zoning

For air zoning, airflow may be reduced by a switch or dry contact using the connections on the right side of the control board. The dry contact may be from a relay and interconnected thermostats, or more commonly a zone controller.

The default reduction is 15%, but it may be adjusted from 5%-20% using the *View-->Indoor Fan* window in the PC App. See PC Application chapter. For airflow values including the reduction, see the Indoor Airflow Data table in the Model Specific Information chapter.

Setpoint Control (Hydronic Control) Connections

If using the on-board Setpoint Control routine with sampling to control buffer tank temperature, no external temperature probe or aquastat is required.

Note that an external buffer tank temperature sensor may be used to replace the internal water OUT line temperature sensor for use with the Setpoint Control routine. This is called **External HTS/CTS** Setpoint Control. See **Operation** chapter.

Setpoint Control: Aux. Connections

When using Setpoint Control, there are **2 methods** for activating hydronic auxiliary heat. See diagram on a following page.

First, a dry contact on terminals **D1** and **D2** is available, to actuate a heating device that has its own controller and transformer. In general, these types of devices will have their own electronic temperature controller. Connection will be made to that device's **E-E** terminals or similar. **D1-D2** defaults to **ON** when heat pump is powered off. Therefore, it is necessary to set the temperature control on the external heating device to a limiting value, e.g. 125°F, and adjust its settings so it is only activated by the heat pump's controller. **This method should be used for the Thermo2000 AltSource tank that is available from Maritime Geothermal as an accessory;** see the setup instruction sheet that comes with tank and on following page.

Second, a 24VAC signal can be used to power the coil of an external contactor to operate auxiliary heat. Choose this method if using a heating device that doesn't have its own electronic controller or control transformer, e.g. a bare heating element in the buffer tank. As per the diagram on the following page, connect a jumper between **R** and **D1** on the terminal strip, and use **D2** and **CD** to power the coil of the external contactor. Under this method, the auxiliary heat also defaults to ON (as long as the heat pump is powered ON to provide 24VAC), so the tank's temperature limiter must remain in operation.

D1-D2 and D2-CD default to ON and so must be used with an auxiliary heating device that has a HIGH TEMPERATURE LIMITER to avoid a serious safety hazard.

If it is not desired to have **D1-D2** default to **ON** when heat pump is powered off, make the following wiring changes in the heat pump's electrical box, while referring to the **Wiring**/ **Schematic** diagram in the **Model Specific Information** chapter.

- Find the light brown wire connected between terminal strip terminal **D1** and the **Elec. Aux. Relay**. Move it from pin **5** to pin **2** of the relay.
- Find the purple wire connected between the left side of the control board and the Elec. Aux. Relay. Move if from terminal L4 (NOT_HYD_AUX) to DO_2 (HYD_AUX) on the control board.

Now D1-D2 will work as before, but will default to OFF when heat pump is off.

TABLE 9 - Setpoint Control: Aux. Connections				
Signal	Description			
D1	Hudronia Auvilianu dru contacto			
D2	Hydronic Auxiliary dry contacts			
R	lumper R and D1			
D1	Jumper R and D1			
D2	24vac to actuate aux. heat contactor coil			
Ср	Contactor coil ground			
Use a 2-conductor 18ga cable.				

High Temperature Hydronic Auxiliary Heat

If using a high temperature hydronic auxiliary device that can only be activated when heat pump compressor is off (for example because the outdoor temperature is too cold), an SPDT relay may be connected to provide a dry contact for high temperature device activation by the heat pump's control board.

Refer to diagram **002304CDG** on a following page and schematic diagram in the **Model Specific Information** section. Connect the external relay's coil (normally relay pins 1 and 3) to **DO_3** (AUX ONLY) and **LC** at the left side of control board.

Then use the **COM** and **NC** relay contacts (normally pins 4 and 5) to enable the high temperature heating device when the **DO_3** (AUX_ONLY) pin is off, meaning compressor is off and auxiliary heat is being called for.

Outdoor Unit: Signal Connections

The speed of the fan and the heating mode expansion valve (EEV) in the outdoor unit are controlled by the control board in the indoor ATF unit, and a temperature sensor is read. Therefore, communication wiring is required.

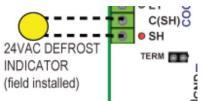
Connect the supplied 8 conductor <u>shielded outdoor</u> <u>rated cable</u> between the terminal strips in the indoor and outdoor units. The shield ground wire is connected only to the indoor unit; do not connect the shield ground to the outdoor unit (there is no terminal for it). Cut the shield ground wire short at the cable sheath in the outdoor unit.

TABLE 10 - Outdoor Unit Signal Connections				
Signal	Description			
EEVR	Electronic Expansion Valve (Red)			
EEVG	Electronic Expansion Valve (Green)			
EEVw	Electronic Expansion Valve (White)			
ЕЕУв	Electronic Expansion Valve (Black)			
TR	Outdoor Temperature Sensor (Power)			
TG	Outdoor Temperature Sensor (Signal)			
Тв	Outdoor Temperature Sensor (Ground)			
PWM+	Outdoor Fan Control			
Shield GND*	Shielded cable ground wire			
* Connect only to the indoor unit. In the outdoor unit, leave unconnected and cut it short at the cable sheath.				

AVOID INSULATION NICKS ON INDIVIDUAL OUTDOOR UNIT SIGNAL WIRES

SLICE A LINE ALONG WIRE SHEATHING TO-WARDS THE END, THEN PULL IT AWAY FROM THE WIRES BEFORE CUTTING OFF.

DO NOT CUT A CIRCLE WITH UTILITY KNIFE BEFORE SEPARATING SHEATHING FROM BUN-DLED SIGNAL WIRES.


Domestic Hot Water (Desuperheater)

The desuperheater function for domestic hot water heating is pre-wired and no field connections are necessary.

After the desuperheater is filled with water and purged of air, activate the built-in DHW circulator by connecting the brown wire with the blue insulated terminal to L1 of the compressor contactor as shown on the wiring diagram in the **Model Specific Information** section. **Ensure the power is off when connecting the wire.** Also, turn on the DHW ON/OFF switch.

Defrost Indicator (field installed)

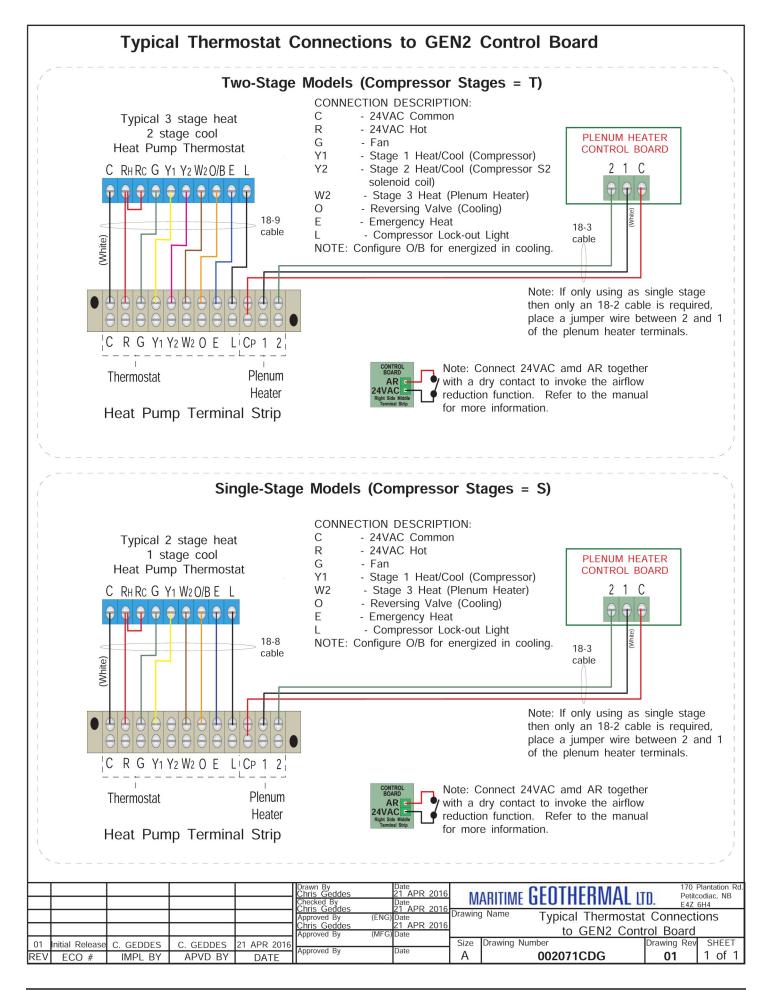
A 24VAC signal is available for an externally installed indicator, which is active when the heat pump is in defrost mode. This may be useful for the building operator or homeowner, to know when buffer tank is being cooled instead of heated. The indicator may be installed between terminals **SH** and **C** (**SH**) at the lower left side of control board.

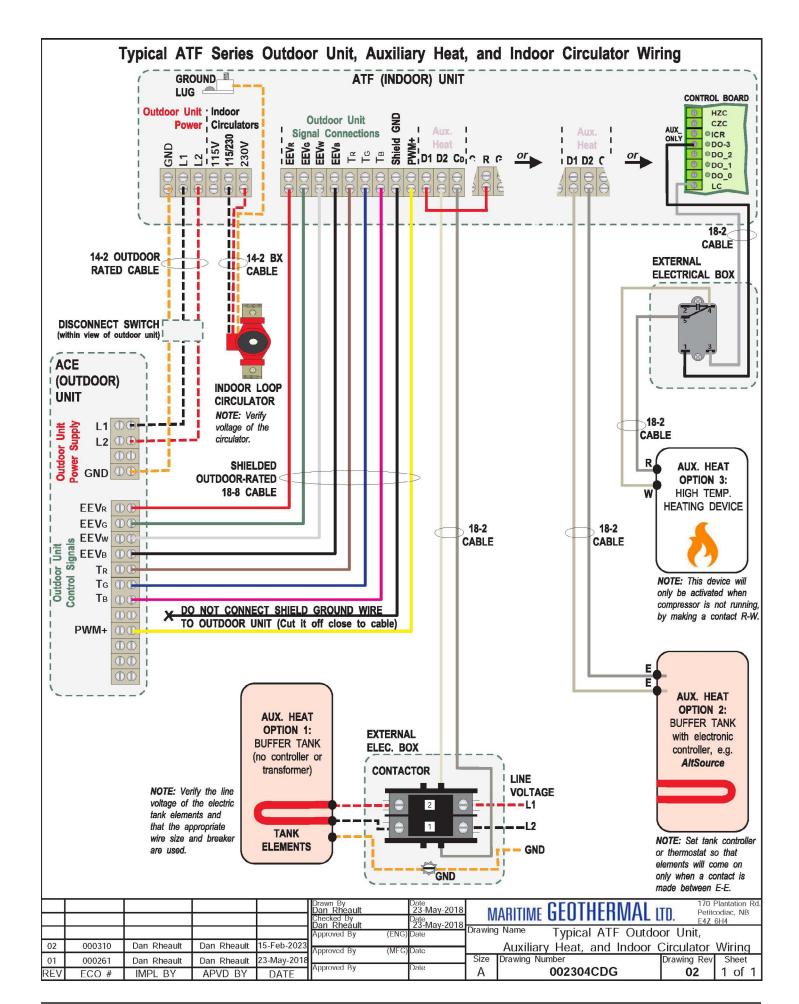
Air Thermostat Connections

A three-stage heating and two stage cooling heat pump configurable thermostat is required. The stages are S1 = stage 1 compressor, S2 = stage 2 compressor and S3 = electric auxiliary (in heating mode only). One can be ordered with the unit, or other heat pump thermostats with the same number of stages can be used. The air thermostat connections are located on a terminal strip in the indoor unit. Refer to diagram on a following page for connections between the thermostat and the heat pump.

The airflow can be reduced by an adjustable amount between 5 and 20% (value set in **PC App**) by making a dry contact across **24VAC** and **AR** on the right side middle terminal strip of the control board. This can be used for applications that have multiple air zones.

Care should be taken to ensure that the unit does not trip a safety control in heating or cooling mode if the AR reduction is used in conjunction with lower air flow settings.


TABLE 1	TABLE 11 - Air Thermostat Connections			
Signal	Description			
С	24VAC common (ground)			
R	24VAC hot			
G	Fan low speed (for air recirculation)			
Y1	Compressor ON (part load)			
Y2	Compressor bump up to stage 2 (full load)			
W2	Heating stage 3 (plenum heater)			
0	Cooling mode (reversing valve)			
Е	Emergency heat (plenum heater)			
L	Fault (24VAC when fault condition)			
AR	Airflow reduction: connect AR_1 to AR_2 with a dry			
24VAC	contact to reduce the airflow for zoning. Connec- tions located on control board.			

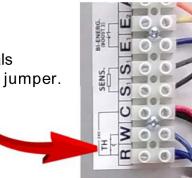

Aquastat Connections (Optional)

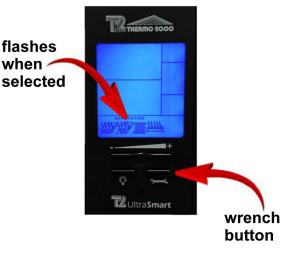
Most installations will use the internal **Setpoint Control** routine to control buffer tank temperature, in which case no aquastat is required. However, an aquastat or aquastats can be used if required, for example if heating two loops with different setpoint temperatures. This is called **Signals Control**.

The wiring connections are at the top right of the ATF's control board, on the screw terminal connector section marked **AQUASTAT**. This is shown on the wiring (SCH) diagram in the **Model Specific Information** section. The external device needs to send the 24VAC signal from **RA** back to the **Y1A** and **Y2A** terminals to call for the two stages of hydronic heating. **C** or **CA** is the common or ground terminal for powering the external device.

TABLE 12 - Aquastat (Signals Control) Connections				
Signal	Description			
C/CA	24VAC common (ground)			
R/RA	24VAC hot			
Y1A	Compressor ON (part load)			
Y2A	Compressor bump up to stage 2 (full load)			

AltSource Tanks: Getting Started


A full product manual from Thermo2000 is included with the AltSource tank.

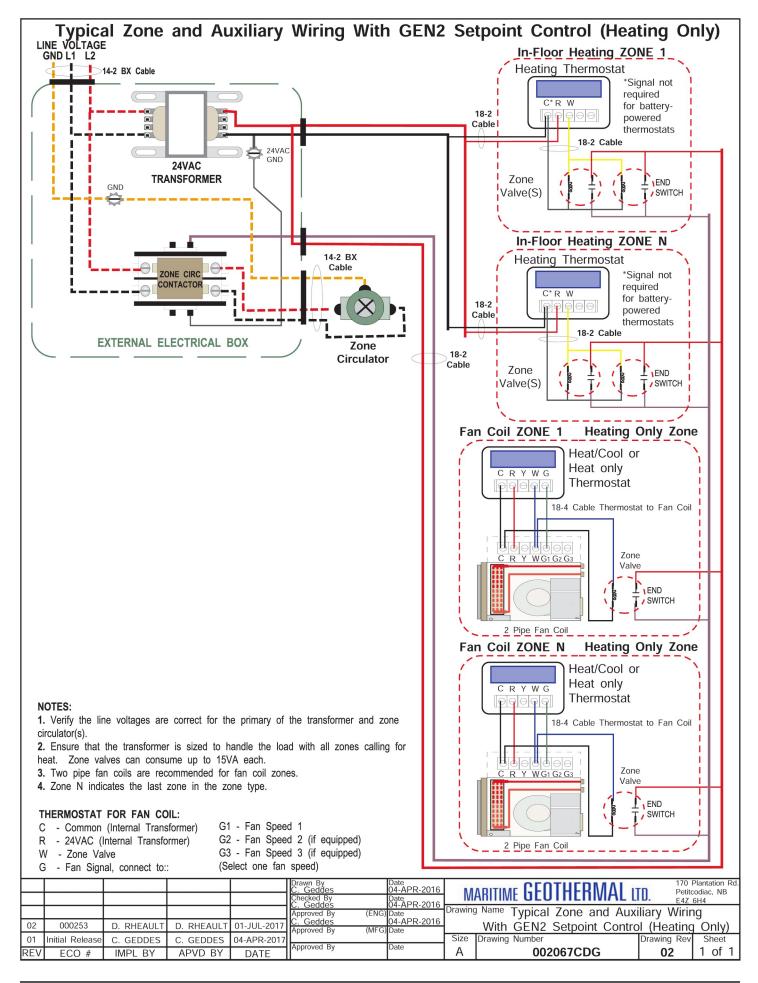

This sheet describes how to set the tank to work in conjunction with **NORDIC** heat pumps that are equipped with **D1-D2** terminals. (Some W-series models may not have D1-D2 terminals; in this case the tank can instead be set up run under its own control with a setpoint lower than that of the heat pump.)

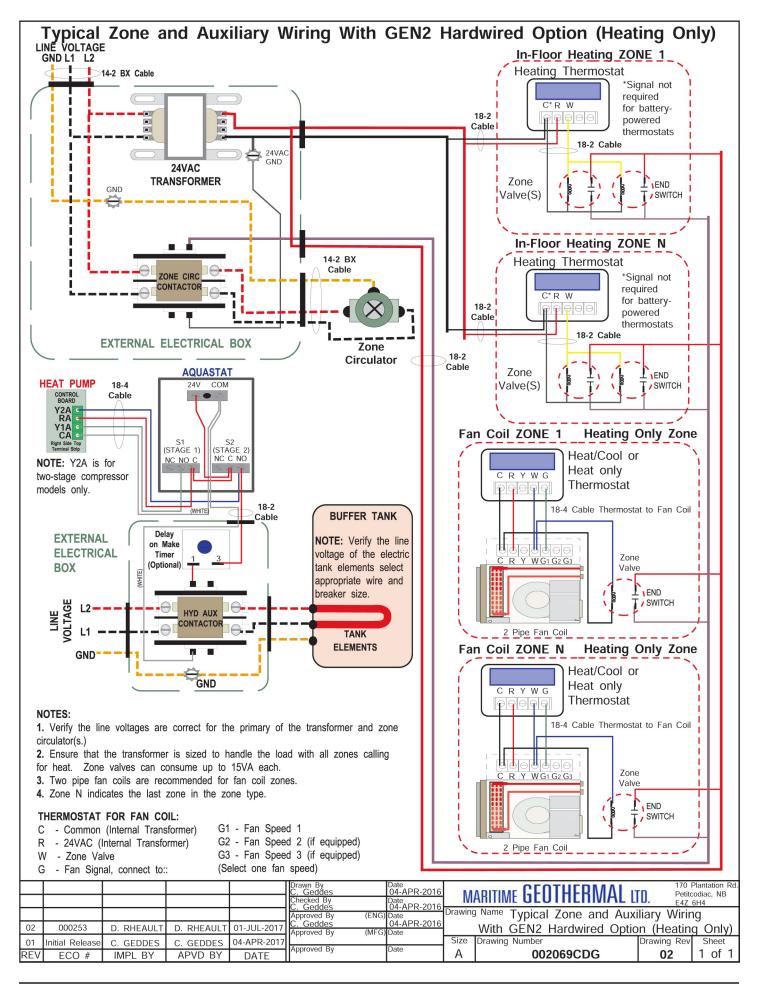
- **1.** Put the tank in "Bi-Energy" rather than "Electric" mode, with switch on back of controller.
- 2. Set the tank to "joist heat" mode by holding the wrench button to display the °F/°C setting, press again to go to heating types, then toggle to second setting which is a picture of joists. Press wrench button three more times to exit.

(This doesn't mean that joist heating is being done, it just sets a 125°F high temperature limit that works well with standard temperature range heat pumps.)

3. Connect tank terminals **R** and **W** with a wire jumper.

4. Now the tank elements will only be activated by a connection between the E₁-E₂ tank terminals, up to the 125°F maximum. This will be done by an 18-2 wire to the D1-D2 terminals in the heat pump, activating the elements only when AUX heat is required.


See heat pump manual for further explanation.


With E_1 and E_2 disconnected (not connected by the heat pump's **D1-D2** terminals), the tank's screen will look like this.

With E_1 and E_2 connected by the heat pump, a temperature setpoint of **125°F** corresponding to "joist heat" will appear. This is fine for a high limit.

Indoor Loop Water Lines

The connections for the Indoor Loop circuit are 1" brass FNPT. They are labelled as INDOOR IN and INDOOR OUT. The ports are located on the front of the unit.

Recommended buffer tank piping is shown in diagrams on following pages. They show all of the recommended components as well as where they should be placed. If other types of components are used or connected differently, this is done at user's discretion with the caution that heat pump may or may not work properly.

NOTE: It is recommended that the water lines between the heat pump and the buffer tank be copper or other high temperature piping.

NOTE: Care should be taken when routing the water lines to ensure that adequate access to the heat pump is maintained so as to not compromise ease of serviceability.

The minimum buffer tank size should follow the rule of 8 US gallons per ton of heat pump capacity. The following table shows the minimum buffer tank size for each heat pump along with the recommended size. The recommended size will minimize the number of starts per hour and provide longer runtimes for improved efficiency.

TABLE 13 - Buffer Tank Size					
Heat Pump Size	Minimum Size gallons (Litres)	Recommended Size gallons (Litres)			
45	24 (91)	50 (190)			
55	32 (121)	70 (265)			
65	40 (151)	70 (265)			
75 48 (182) 70 (265)					
If a tank size is not available, use the next size larger tank.					

Condensate Drain

The unit comes equipped with one 3/4" female PVC socket drain connection. This drain allows the condensate which forms during the air conditioning cycle to be removed from the unit. The drain should be connected and vented as per local codes. During high humidity weather, there could be as much as 25 gallons of water formed per day.

The condensate drain is internally trapped and does not require an external trap. An external condensate pump may be installed if there is not sufficient slope to drain condensate under gravity to its destination.

To avoid overflow of the condensate pan, the drain line and trap should be inspected periodically to ensure they are not plugged with accumulated debris. There may be an alarm for condensate overflow, which will disable unit operation.

See also the **Ductwork** section for a diagram showing condensate drain connection.

Domestic Hot Water (Desuperheater) Connections

The connections for the DHW circuit are 1/2" brass FPT fittings. They are marked as DHW IN and DHW OUT.

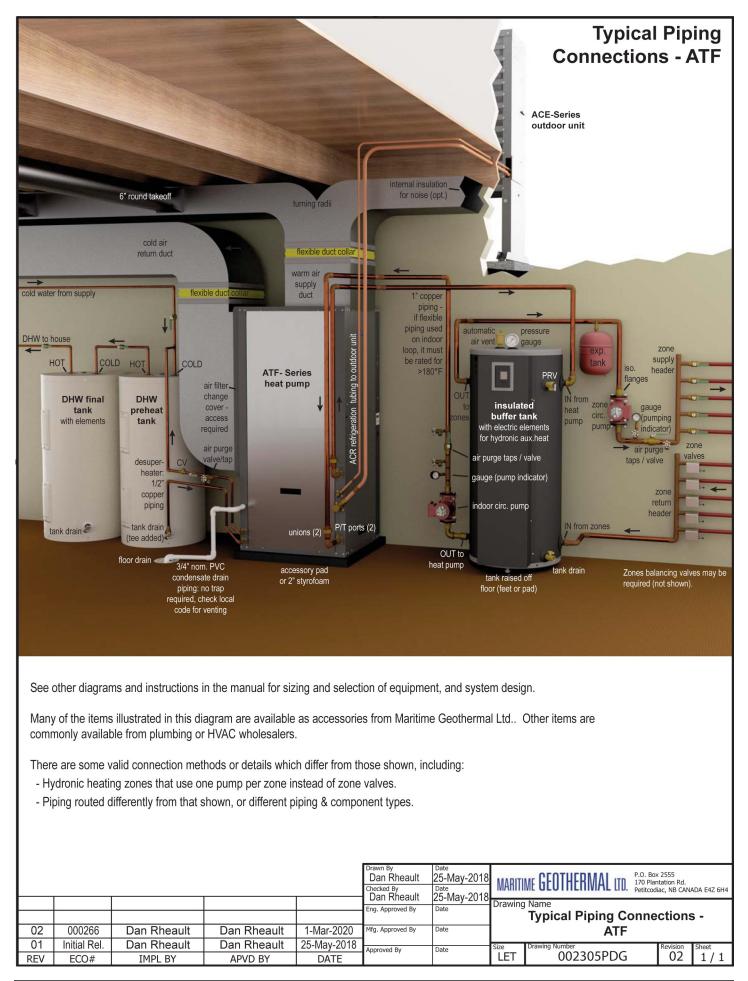
A typical piping diagram for a pre-heat tank configuration can be found in document **000970PDG** at the end of this section. Be sure to note the position of the check valve and the direction of water flow. Other configurations are possible, and there may be multiple units tied together in larger buildings.

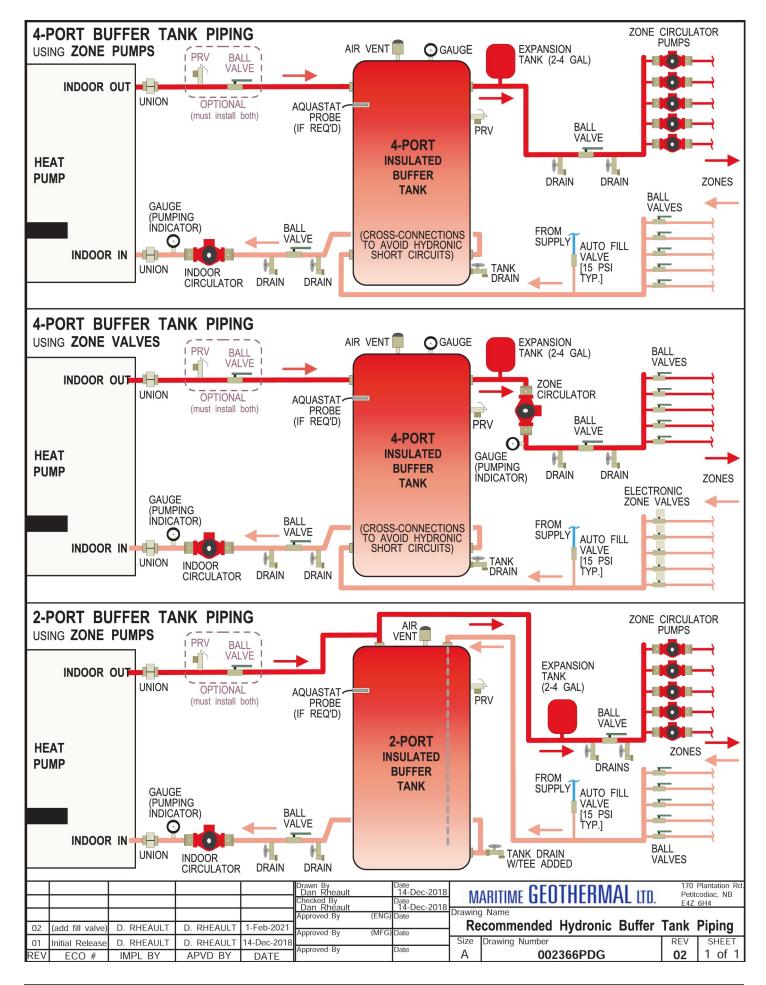
WARNING: USE ONLY COPPER LINES TO CONNECT THE DESUPERHEATER. TEMPERA-TURES CAN BE >200°F NEAR THE UNIT WITH DESUPERHEATER TURNED OFF, POTENTIALLY MELTING & RUPTURING PLASTIC PIPING.

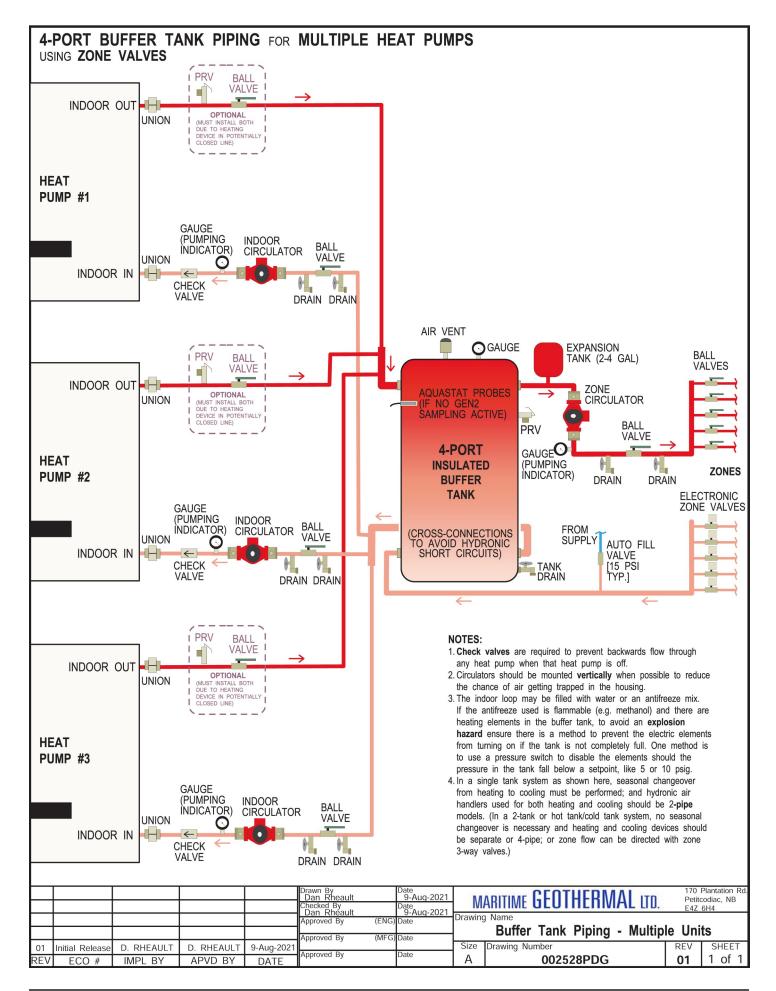
Ensure the tank is filled with water and under pressure before activating the built-in DHW circulator as described below. First, slightly loosen the boiler drain on the DHW Out pipe to allow air to escape from the system. This step will make certain that the domestic hot water circulator in the unit is flooded with water when it is started.

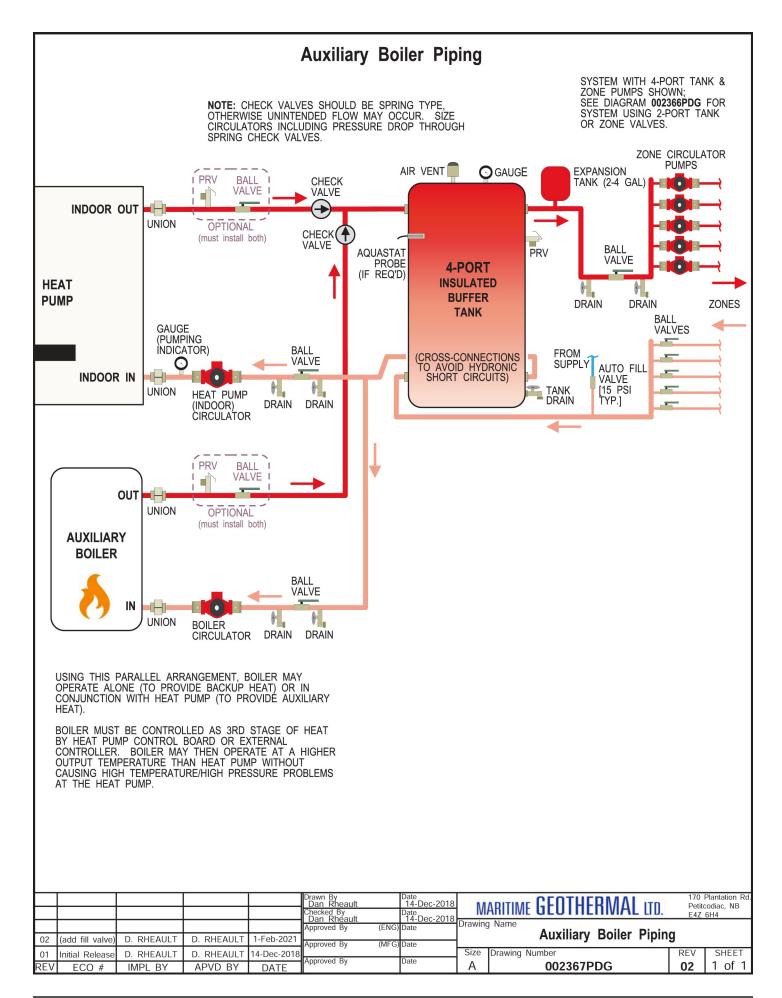
CAUTION: the domestic hot water pump is water lubricated; damage will occur to the pump if it is run dry for even a short period of time.

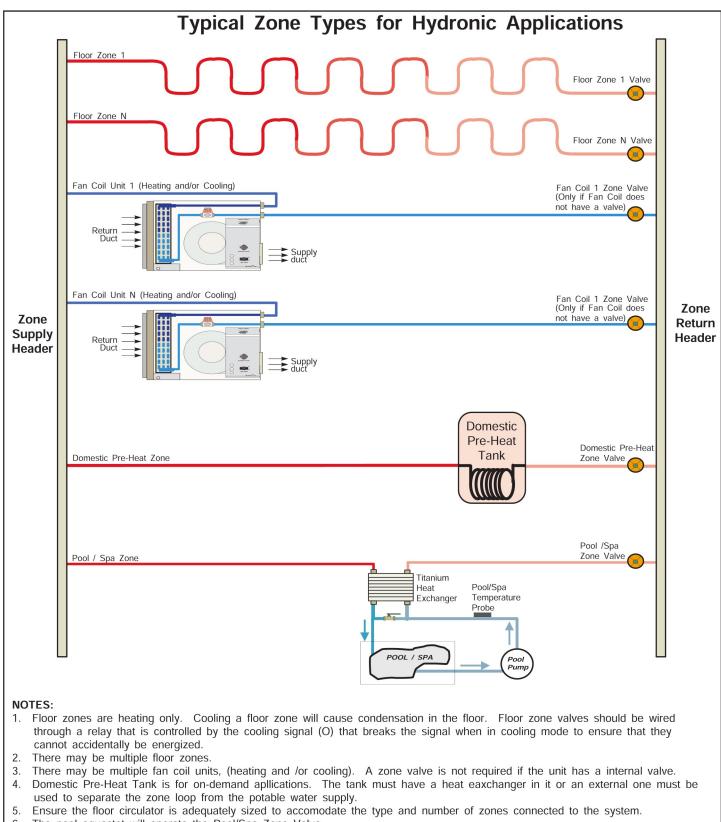
Activate the built-in DHW circulator by connecting the brown wire with the blue insulated terminal to L1 of the compressor contactor. **Ensure the power is off when connecting the wire.** Once connected the DHW switch on the front of the unit may be used to enable/disable the domestic hot water circulator.

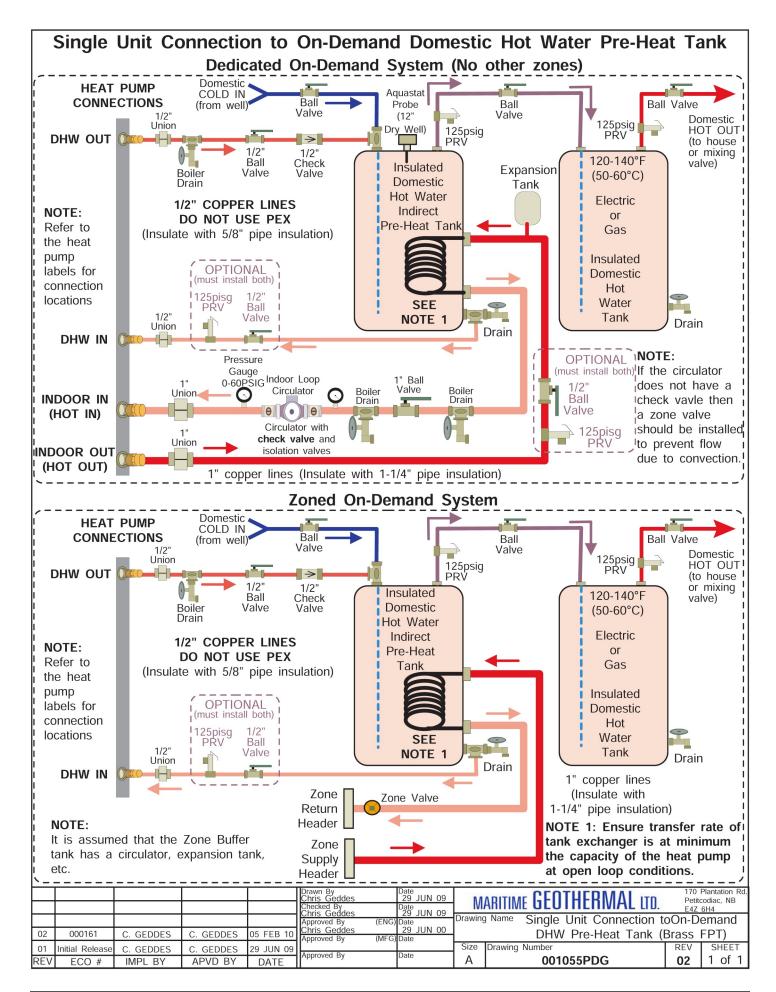

The DHW loop may have to be purged of air several times before good circulation is obtained. A temperature difference between the DHW In and DHW Out can be felt by hand when the circulator pump is operating properly.

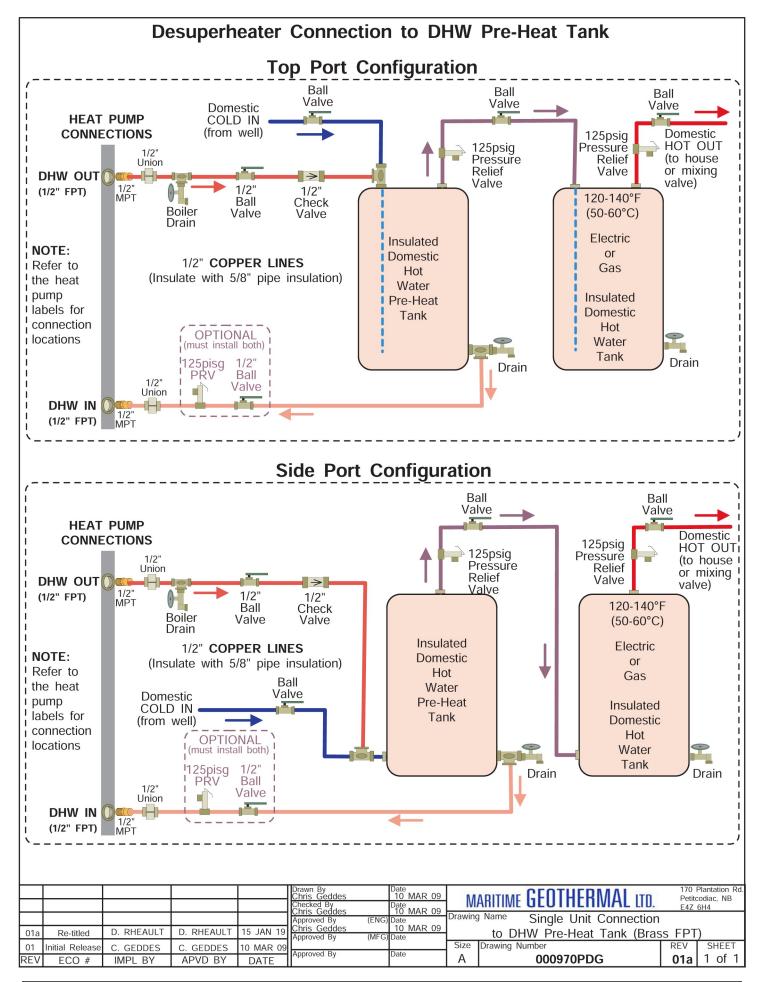

For the pre-heat tank setup, the final tank should be set to 140°F (60°C), which is required by most codes. The pre-heat tank does not require electric elements. This setup takes full advantage of the desuperheater as it is the sole heat provider to the pre-heat tank. The desuperheater remains active during the compressor runtime until the pre-heat tank has been completely heated by the desuperheater alone. This setup is more energy efficient than a single tank setup, and eliminates the possibility of reverse heating of the refrigerant gas under low condensing temperature operating conditions.

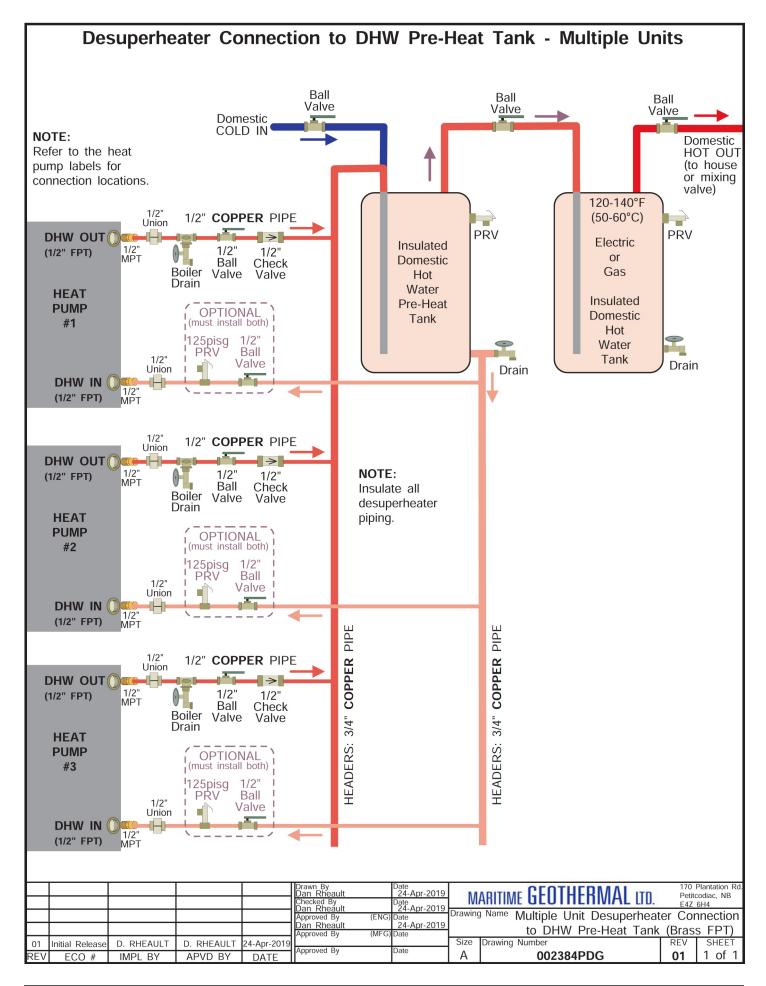



CAUTION: If two (2) shut-off valves are located on the domestic hot water ines as shown in the diagram, a pressure relief valve must be installed to prevent possible damage to the domestic hot water circulator pump should both valves be closed.


Note that connection and use of the desuperheater is optional, and there is no problem for the heat pump if desuperheater is left unconnected.







6. The pool aquastat will operate the Pool/Spa Zone Valve.

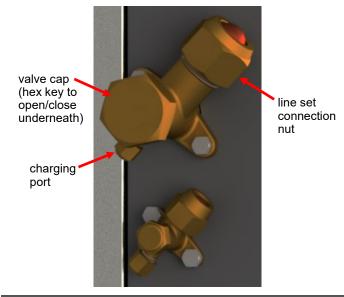
					Drawn By Chris Geddes Checked By	Date 06 SEP 07 Date 06 SEP 07	М	ARITIME GEOTHERMAL LTD.		Plantation Rd. codiac, NB 6H4
					Chris Geddes	IG) Date 06 SEP 07 06 SEP 07	Drawing Name			
01	Initial Release	C. GEDDES	C. GEDDES	06 SEP 07		·	Size	Drawing Number	REV	SHEET
RE۱	/ ECO #	IMPL BY	APVD BY	DATE	Approved By	Date	A	000530PDG	01	1 of 1

Line Set Interconnect Tubing

Once both the indoor and outdoor units have been mounted, the line set may be run between them. The line set consists of a liquid line and a vapour line.

The tubing used for this procedure must be ACR refrigeration tubing (cleaned & dehydrated). Every effort must be made to insure that the tubing does not become contaminated during installation. It is recommended that caps be placed on the open ends of tubing immediately after cuts are made and that these caps are only removed after all bends have been made and the pipe fixed in its permanent location ready to make the silver soldered joints. It is very important to keep a refrigeration system perfectly clean and dry. Removing the caps just prior to silver soldering or flaring will ensure minimum exposure to humidity in the atmosphere.

TABLE 14 - Line Set Sizing				
ATA-25/45	Vapour line O.D.	3/4"		
	Liquid line O.D.	3/8"		
ATA-55/65/75	Vapour line O.D.	7/8"		
	Liquid line O.D.	1/2"		


IMPORTANT NOTE: The line set between the indoor and outdoor units must not exceed 70 ft. (21 m) in length.

Indoor Unit Connections

The indoor unit connections for the interconnect line set are 3-way brass service valves with flare connections. After the line set is installed, the tubing can be vacuumed through the Schrader charging port on the 3-way valve, then the valve opened to let refrigerant contained in the indoor unit into the line set and outdoor unit.

The indoor unit comes pre-charged with enough refrigerant for a 20 ft. (6.1 m) line set. Longer line sets will require added charge; see next page.

Copper flare to solder adapters are included with the indoor unit, to remove the requirement to do an accurate flare in the field, especially on the larger 7/8" pipe. These are shipped along with the mounting feet for the outdoor unit and shielded 18-8 wire near the compressor in the indoor unit.

TABLE 15a - 3-way Service Valve Tooling						
Nominal Size	Line set connection nut wrench	Valve cap wrench	Charging port cap wrench			
3/8"	22 mm	5 mm	19 mm	14 mm		
	(7/8")	<i>(3/16")</i>	<i>(3/4")</i>	(9/16")		
1/2"	24 mm	5 mm	19 mm	14 mm		
	<i>(1"</i>)	<i>(3/16")</i>	<i>(3/4")</i>	(9/16")		
3/4"	32 mm	5 mm	30 mm	14 mm		
	<i>(1-3/8"</i>)	<i>(3/16")</i>	<i>(1-1/4"</i>)	(9/16")		
7/8"	38 mm	8 mm	42 mm	14 mm		
	(1-1/2")	<i>(5/16")</i>	(1-3/4")	(9/16")		

TABLE 15b - 3-way Service Valve Torques							
Nominal Size	Line set connection nut torque	Hex key torque	Valve cap torque	Charging port cap torque			
3/8"	30-35 N.m	5-7 N.m	20-25 N.m	10-12 N.m			
	(22-26 ft.lb)	(4-5 ft.lb)	(15-18 ft.lb)	(7-9 ft.lb)			
1/2"	40-45 N.m	7-9 N.m	25-30 N.m	10-12 N.m			
	(30-33 ft.lb)	(5-7 ft.lb)	(18-22 ft.lb)	(7-9 ft.lb)			
3/4"	60-65 N.m	11-13 N.m	35-40 N.m	10-12 N.m			
	(44-48 ft.lb)	(8-10 ft.lb)	(26-29 ft.lb)	(7-9 ft.lb)			
7/8"	110-120 N.m <i>(81-88</i> <i>ft.lb)</i>	28-32 N.m (21-24 ft.lb)	47-53 N.m (35-39 ft.lb)	10-12 N.m (7-9 ft.lb)			

Outdoor Unit Connections

The outdoor unit has capped off (soldered) pipes from the factory and is charged with 15 - 25 psig of nitrogen. Remove the side cover from the outdoor unit so that the piping is accessible. There is an illustration for a typical installation on a following page.

Oil Traps

If the line set has a vertical rise of over 20 ft (6 m), then an oil trap must be placed in the line set every 20 ft (6 m) of rise as shown in diagram.

Filter-Dryer

Note that **no field installed filter-dryer is required**, since one is included in the indoor unit.

Pipe Insulation

All line set piping between the indoor and outdoor units should be insulated with 3/8" thick closed cell pipe insulation to prevent condensation and dripping onto floors or walls during the heating season. It can be slid onto the capped tubing without having to slice it down the side for the most part. Ensure that any joints in in the line sets are accessible for leak testing.

Liquid and vapour ports and any remaining exposed tubing should be insulated with 3/8" thick closed cell pipe insulation once the silver soldering and pressure testing is complete. Ensure that all individual pieces of pipe insulation are glued to each other so there are no air gaps.

Silver Soldering Line Sets

All joints are to be silver soldered with 5% silver solder. It is <u>absolutely required</u> that dry nitrogen be bled through the system during all silver soldering procedures so that no oxidation occurs on the inside of the copper tubing. Connect a set of refrigeration gauges to the service ports (Schrader ports) on the access valves of the indoor unit, the low side (blue hose) to the vapour line and the high side (red hose) to the liquid line. Connect the charge line (yellow hose) to a nitrogen source. Disconnect the high side (red) hose at the manifold so that nitrogen may flow freely though the line set. Adjust the nitrogen pressure through the low side (blue hose) so that it can be very lightly felt when a finger is placed on the disconnected high side (red) hose.

A wet rag may be wrapped around each of the outdoor unit ports to prevent melting the grommet when silver soldering; however this should may not be necessary for a skilled welder due to the distance from the grommet. Ensure that no water enters any of the ports or tubing.

Pressure Testing

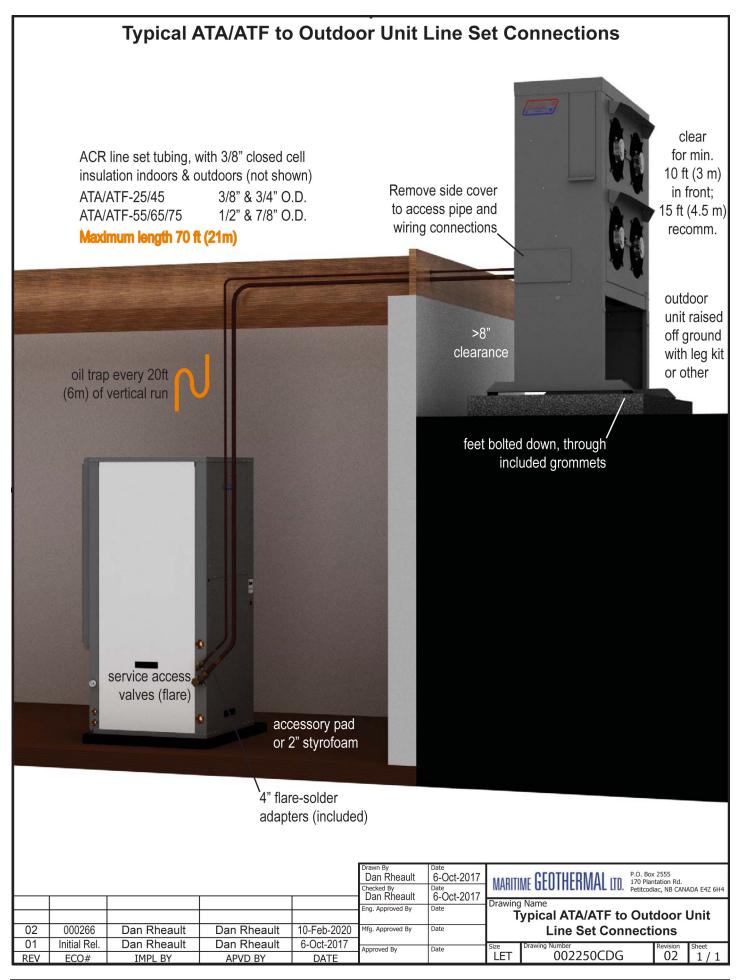
Once all connections are complete, the system should be pressure tested to a final test pressure of **125 psig (860 kPa)** with dry nitrogen. Reconnect the high side (red) hose to the manifold and pressurize the line set. It is recommended to pressure test in stages, listening and inspecting for leaks along the way. For example, 10 psig (70 kPa), 25 psig (170kPa), 75 psig (520kPa) and then finally 125PSIG (860kPa). Check all joints at the unit and any made in the interconnect tubing for leaks using soap suds, Spray Nine, etc. It is important not to bypass this step as vacuuming the system with a leak will be impossible and attempting to do so will introduce moisture into the system, making the vacuum process take much longer than if the leak had been found and repaired first. It is recommended that the system be left under pressure for a minimum of two hours to ensure there are no small leaks that were undetected.

Vacuuming the System

Remove the pressure from the system and connect the vacuum pump to the charge line (yellow hose) of the refrigeration manifold. Tighten all hose connections, open the valves on the manifold and start the vacuum pump.

Vacuum the system until the reading on an electronic vacuum gauge remains below 500 microns for a period of 5 minutes after the vacuum pump is shut off and the system sealed.

Charging the System


The indoor unit is pre-charged for line sets up to **20 ft** long. Once the system has been vacuumed, if extra refrigerant is required due to the length of the line set, it may be added before opening the access valves. Close off the charge valve on the refrigeration manifold set and disconnect the vacuum pump. Connect the charge (yellow) hose to the **liquid port** of a refrigerant tank and place the tank on a scale. Open the liquid valve of the refrigerant tank and then slightly loosen the charge (yellow) hose at the manifold until liquid comes out, then quickly re-tighten the hose. This will ensure that no air enters the system. Zero the scale and then add the amount of refrigerant calculated from the tables below.

Once the additional charge (if any) has been added, disconnect both hoses from the service ports of the access valves and place the caps back on them, tighten with a wrench.

Remove the caps from the access valves and open both valves with a hex key. Open the valves (counter-clockwise) until they stop turning. Replace the caps and tighten with a wrench.

The system is now ready for startup. Clean up the area, and install all access panels except the one which gives access to the electrical box. Proceed to the Startup Section of the manual before turning the power on to the unit.

TABLE 16 - Extra Charge for Model Sizes 25-45							
Extra charge for line sets >20 ft (6 m)	1.1 oz per ft OR 0.10 kg per m		Extra charge for line sets >20 ft (6 m)	2.1 oz per ft OR 0.18 kg per m			
Line set length	Ext	tra Cha	rge	Line set length	Ext	tra Cha	rge
(ft)	(oz)	(lb)	(kg)	(ft)	(oz)	(lb)	(kg)
22	2	0.1	0.06	22	4	0.3	0.12
24	4	0.3	0.12	24	8	0.5	0.24
26	7	0.4	0.19	26	13	0.8	0.36
28	9	0.6	0.25	28	17	1.1	0.48
30	11	0.7	0.31	30	21	1.3	0.60
32	13	0.8	0.37	32	25	1.6	0.71
34	15	1.0	0.44	34	29	1.8	0.83
36	18	1.1	0.50	36	34	2.1	0.95
38	20	1.2	0.56	38	38	2.4	1.07
40	22	1.4	0.62	40	42	2.6	1.19
42	24	1.5	0.69	42	46	2.9	1.31
44	26	1.7	0.75	44	50	3.2	1.43
46	29	1.8	0.81	46	55	3.4	1.55
48	31	1.9	0.87	48	59	3.7	1.67
50	33	2.1	0.94	50	63	3.9	1.79
52	35	2.2	1.00	52	67	4.2	1.91
54	37	2.3	1.06	54	71	4.5	2.02
56	40	2.5	1.12	56	76	4.7	2.14
58	42	2.6	1.19	58	80	5.0	2.26
60	44	2.8	1.25	60	84	5.3	2.38
62	46	2.9	1.31	62	88	5.5	2.50
64	48	3.0	1.37	64	92	5.8	2.62
66	51	3.2	1.43	66	97	6.0	2.74
68	53	3.3	1.50	68	101	6.3	2.86
70	55	3.4	1.56	70	105	6.6	2.98

Indoor Unit Blower Motor

The indoor unit is equipped with a direct drive ECM blower. The motor features a soft start function, and will maintain the programmed airflow up to the maximum external static value.

The airflow can be set in increments of 100cfm within an allowed range using the **Indoor Fan page** of the **PC App**. Airflow will be reduced with decreasing outdoor temperature, to avoid progressively cooler heated air being delivered as heat pump capacity decreases due to cold weather.

Air Duct Zoning

Air zoning can be done with heat pumps that have 2-stage compressors, but only to a limited extent. It is recommended that heating zoning be done with the hydronic side instead. With ducted air zoning, no zone should be less than 1/3 the total area, to avoid problems of high airflow and noise through one zone or safety control trips due to capacity mismatch between heat pump and zones.

The airflow can be reduced by an adjustable amount between 5 and 20% (value set in **PC App**) by making a dry contact across **24VAC** and **AR** on the right side middle terminal strip of the control board, as show in **Wiring** chapter.

When only one zone of 50% or less is calling for heating or cooling, the compressor should be limited to **stage 1** operation by the zone controller by sending only a **Y1** (without Y2) control signal. Stage 1 corresponds to ~67% compressor capacity and ~80% airflow.

Refer to **Indoor Airflow Data** in the **Model Specific Infor**mation section for actual airflows with the various reductions.

Duct Systems - General

Ductwork layout for a heat pump will differ from traditional hot air furnace design in the number of leads and size of main trunks required. Air temperature leaving the heat pump is normally **95°-105°F (35-40°C)**, much cooler than that of a conventional fossil fuel furnace. To compensate for this, larger volumes of lower temperature air must be moved and consequently duct sizing must be able to accommodate the greater airflow without creating a high static pressure or high velocity at the floor diffusers.

A duct system capable of supplying the required airflow is of utmost importance. Maritime Geothermal Ltd. recommends that the external static pressure from the duct system be kept below 0.2 inches of water total. In some instances the number of floor diffusers will actually double when compared to the number that would be used for a hot air oil-fired furnace. Refer to following tables.

- 1. Generally allow 100 cfm for each floor grill.
- 2. All leads to the grills should be 6" in diameter (28sq.in. each).
- 3. The main hot air trunks should be at least 75% of the cross sectional area of leads being fed at any given point.
- Return air grills should have a minimum of the same total cross sectional area as the total of the supply grills.
- The cross sectional area of the return trunks should equal the cross sectional area of the grills being handled at any given point along the trunk.

It is **VERY IMPORTANT** that all turns in both the supply trunks and the return trunks be made with **TURNING RADII**. Air act like a fluid and, just like water, pressure drop is increased when air is forced to change direction rapidly around a sharp or irregular corner.

Flexible collars should be used to connect the main trunks to the heat pump. This helps prevent any vibrations from travel-

ling down the ductwork. If a plenum heater is installed, the collar should be at least 12" away from the heater elements.

If desired, the first 5-10 feet of the main supply trunks can be insulated internally with acoustical duct insulation to further inhibit any noise from the unit from travelling down the ductwork. If a plenum heater is installed, insulation should not be placed within 12" of the heater elements.

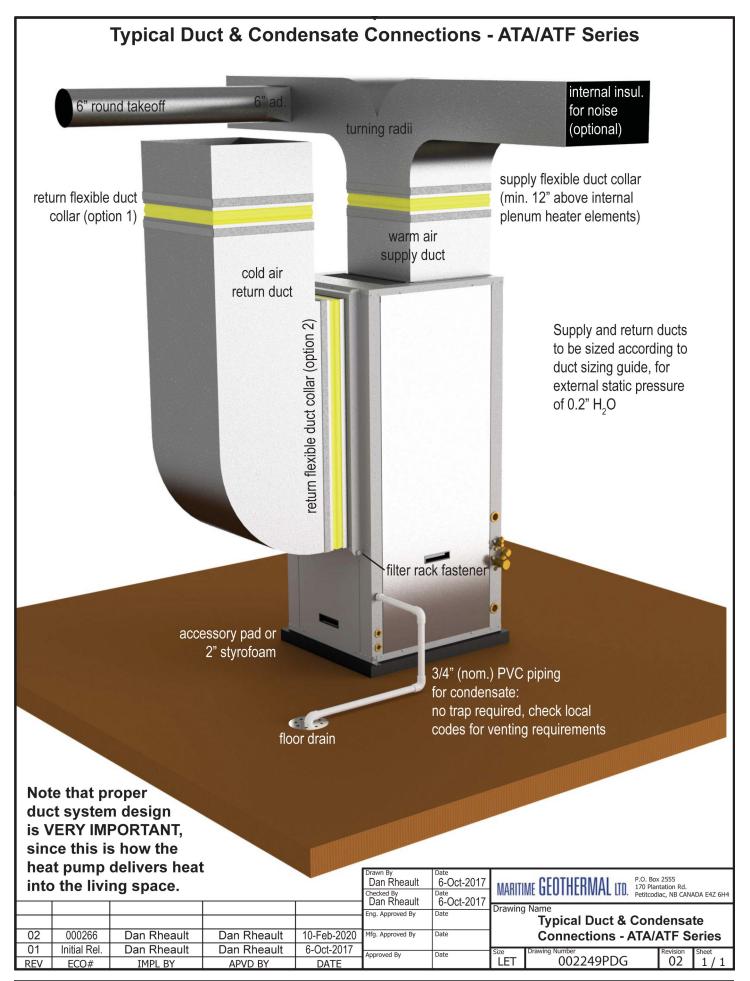
Duct Systems - Grill Layout

Most forced air heating systems in homes have the floor grills placed around the perimeter of the room. Supply grills should be placed under a window when possible to help prevent condensation on the window. Supply grill leads should be 6" in diameter (28 square inches each) to allow **100 cfm** of airflow.

In a typical new construction, there should be one supply grill for every 100 square feet of area in the room. When rooms require more than one grill, they should be placed in a manner that promotes even heat distribution, such as one at each end of the room. It is a good idea to place a damper in each grill supply or place adjustable grills so that any imbalances in the heat distribution can be corrected.

The total number of supply grills is based on the heat pump's nominal airflow. The table shows the number of grills recommended per heat pump size.

TABLE 18 - Number of Air Grills						
Model Size	# of Grills (@100 cfm)					
45	12					
55	15 19					
65						
75	21					


Return grills should be mounted on the floor. At minimum they should be the same size as the supply grill, **it is highly recommended that they be 25% to 50% larger than the total supply.** They should be placed opposite the supply grills when possible to ensure distribution across the room. For rooms requiring more than one supply grill, it may be possible to use one larger return grill if it can be centrally positioned opposite of the supply grills, however it is preferred to have one return for each supply to optimize heat distribution across the room.

Thermostat Location

Most homes are a single ducted air zone with one thermostat. The thermostat should be centrally located within the home, typically on the main floor. It should be placed away from any supply grills, and should not be positioned directly above a return grill. Most installations have the thermostat located in a hallway, or on the inner wall of the living room. It should be noted that most homes do not have any supply ducts in the hallway. This can lead to a temperature lag at the thermostat if there is very little air movement in the hallway, causing the home to be warmer than indicated by the thermostat.

Plenum Heater

The plenum heater will be usually installed inside the heat pump, as described in the **Installation Basics** section. If the blower is installed in the side discharge position, the plenum heater will be installed in the discharge ductwork outside the unit, at least 12" away from any flexible duct collars. There is an accessory plenum heater with a wider cage profile available that is more suitable for duct installation.

TABLE 19 - Duct Sizing Guide (external static of 0.20" H2O)											
Airflow (cfm)	Minimum Duct Area (sq.in)	Diameter (in)		Rect	Return Air Diameter (in)	Airflow (L/s)					
37	20	5	2.25 x 10	3 x 8	3.5 x 6	4 x 5.5	5 x 5		→ 5	17	
63	20	5	2.25 x 10	3 x 8	3.5 x 6	4 x 5.5	5 x 5		6	30	
100	28	6	3.25 x 10	4 x 8	5 x 6	5.5 x 5.5	6 x 6		7 م	47	
152	38	7	3.25 x 14	4 x 11	5 x 8.5	6 x 7	6.5 x 6.5		8 سر 🕨	72	
212	50	8	4 x 15	5 x 12	6 x 10	7 x 8	8 x 8		9 – ۲	100	
226	50	8	4 x 15	5 x 12	6 x 10	7 x 8	8 x 8		10	107	
277	64	9	5 x 15	6 x 12	7 x 10	8 x 9	8.5 x 8.5		- /_10	131	
304	64	9	5 x 15	6 x 12	7 x 10	8 x 9	8.5 x 8.5			143	
393	79	10	6 x 15	7 x 13	8 x 11	9 x 10	9.5 x 9.5		- 12	185	
411	113	12	7 x 18	8 x 16	9 x 14	10 x 12	11 x 11		4 12	194	
655	113	12	7 x 18	8 x 16	9 x 14	10 x 12	11 x 11		/ ^{− 14}	309	
680	154	14	8 x 22	9 x 19	10 x 17	11 x 15	12 x 14	13 x 13	4 14	321	
995	154	14	8 x 22	9 x 19	10 x 17	11 x 15	12 x 14	13 x 13	− ¹⁶	470	
1325	201	16	8 x 30	10 x 22	12 x 18	14 x 16	15 x 15		4 – ¹⁸	625	
1450	201	16	8 x 30	10 x 22	12 x 18	14 x 16	15 x 15			684	
1750	254	18	8 x 40	10 x 30	12 x 24	14 x 20	16 x 17	16.5 x 16.5	≁ / 20	826	
2000	254	18	8 x 40	10 x 30	12 x 24	14 x 20	16 x 17	16.5 x 16.5	Γ ²²	944	
2250	314	20	10 x 38	12 x 30	14 x 26	16 x 22	18 x 19	18.5 x 18.5	↓ – 22	1062	
2600	314	20	10 x 38	12 x 30	14 x 26	16 x 22	18 x 19	18.5 x 18.5		1227	
2900	380	22	12 x 36	14 x 30	16 x 26	18 x 23	20 x 20		←	1369	
3400	380	22	12 x 36	14 x 30	16 x 26	18 x 23	20 x 20		// ⁻²⁶	1605	
3600	452	24	14 x 38	16 x 32	18 x 28	20 x 25	22 x 22		↓ – 26	1699	
4300	452	24	14 x 38	16 x 32	18 x 28	20 x 25	22 x 22		²⁸	2029	
5250	531	26	16 x 38	18 x 32	20 x 30	22 x 24	24 x 24			2478	
6125	616	28	18 x 38	20 x 34	22 x 30	24 x 28	26 x 26			2891	
6500	616	28	18 x 38	20 x 34	22 x 30	24 x 28	26 x 26			3068	
7250	707	30	20 x 40	22 x 38	24 x 32	26 x 30	28 x 28		- 34	3422	
7800	707	30	20 x 40	22 x 38	24 x 32	26 x 30	28 x 28			3681	
8500	804	32	22 x 40	24 x 38	26 x 34	28 x 32	30 x 30		- 36	4012	
9200	804	32	22 x 40	24 x 38	26 x 34	28 x 32	30 x 30			4342	
9800	908	34	24 x 42	25 x 40	26 x 38	28 x 34	30 x 32	31 x 31	-38	4625	
10900	908	34	24 x 42	25 x 40	26 x 38	28 x 34	30 x 32	31 x 31	⁴⁰	5144	
			28 x 40	30 x 36	32 x 34	33 x 33			╼┙║		
			30 x 42	32 x 38	34 x 36	35 x 35			↓		
			30 x 45	34 x 40	36 x 38	37 x 37					

BACnet Control

If controlling the system via the BACnet interface, skip the entire **Operation** section. In this case, see the **BACnet Interface** section later in this manual for network specification and BACnet object names.

Air Thermostat Operation

Demand for room heating or cooling through the ducted air system will come from a 24V 3H/2C room thermostat, described in the **Wiring** section. Refer to the thermostat's manual to set it up for 2-stage heat pump with electric backup, and for details on thermostat operation.

In heating dominant climates, better cooling mode dehumidification can be achieved by disabling compressor stage 2 in cooling. Then cooling mode will always operate at 67% compressor capacity, and longer run times will result. This setting must be made through the PC App's Control Panel; see PC Application (PC App) section.

Hydronic Temperature Control

One of the features of the ATF's GEN2 Control Board is built in aquastat functionality known as "Setpoint Control". This is an internal routine to sample the water OUT temperature to determine if hydronic heat is required; both water IN and OUT temperatures are measured using sensors on water lines inside the unit. The indoor circulator pump is turned on at regular intervals to refresh the water temperature. If sampling is not desired, there is the option to use an external accessory temperature sensor.

There is also provision to connect an external aquastat or controller instead of using this routine, for example if two water loops with different setpoints are being heated.

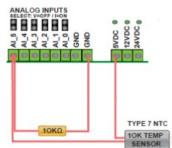
1. Hydronic Heating: Setpoint Control

It is recommended that this method be used to control the system's hydronic heat demand since it eliminates the need for an external temperature sensor or aquastat.

There are two options for Setpoint Control, Indoor Loop (ICR) method and HTS/CTS method.

Setpoint Control Method 1 - Indoor Loop (ICR)

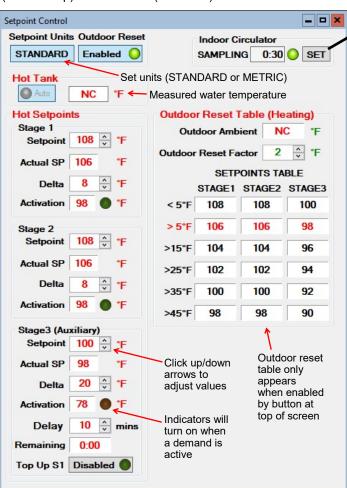
This is the default method and uses the Indoor OUT temperature probe inside the unit for temperature control. Its value is displayed in the **Hot Tank** box on the PC App's **View --> Setpoint Control** screen. If this temperature shows **NC**, then either the probe is not connected to the board or there is a problem with it.


The heat pump will cycle the indoor circulator on and off when the unit is idle or in air heating/cooling mode, in order to sample the water temperature. When hydronic heating mode ends, the indoor circulator will continue to run for 30 seconds. It will then cycle with an OFF time and ON time as set by the **Set ICR Sampling** popup which appears when **SET** is clicked on the **View --> Setpoint Control** screen. The timer counts down the time remaining before the next switch between ON/OFF. The indoor circulator indicator will indicate when the circulator is ON, OFF or SAMPLING. The default sampling times are 2 minutes ON and 6 minutes OFF. The LCD interface will also indicate when the ICR is sampling (ON). The **Timer Override** button will reduce the countdown timer to 10 seconds. When sampling is done, stage 1/2/AUX water heating will be initiated if water temperature is below the corresponding activation point.

See below, and also the **PC Application (PC App)** section for full screenshots of the various windows.

Setpoint Control Method 2 - External HTS/CTS

PC APP: Tools>Configuration	Control Source HYD	Setpoints V
	Setpoints Method	External (HTS/CTS) 🗸
LCD Interface: Configuration	Control HYD Setpoints	
	Setpoints M HTS/CTS	lethod


When this method is used, no indoor circulator control for temperature sampling will occur. It requires an external temperature sensor placed in a dry well in the top of the buffer tank. Its value is displayed in the **Hot Tank** box on the PC App's **View --** > **Setpoint Control** screen. If this temperature shows **NC**, then either the probe is not connected to the board or there is a problem with it.

A 10K Type 7 (or Type 3) NTC thermistor along with a 10K 1% or better resistor must be connected to the control board in order to use the External HTS/CTS method. Connect the sensor to the AI_5 input as shown above and on the wiring diagram (SCH) in the **Model Specific Information** section. Remove the AI 5 jumper on the control board.

For both setpoint control methods, hydronic temperature setpoints are controlled through the LCD interface or PC App (View-->Setpoint Control).

The **Setpoint Control** screen looks like this for both Method 1 (Indoor Loop) and Method 2 (HTS/CTS).

WARNING: When switching to Manual Override mode, the Activation no longer responds to the Setpoint Control values (i.e. if a stage is on it will not turn off when the setpoint is reached. Go to the Control Panel to turn demand ON/OFF with the Stage buttons when in Manual Override Mode.

TABLE 20 - Typical Temperature Setpoints									
	Sta	ge 1	Sta	Stage 2		ge 3			
Item	°F	°C	°F	°C	°F	°C			
Setpoint	108	42	105	41	102	39			
Delta	8	4	8	4	8	4			
Activation *	100	38	97	37	94	35			
Delay	Delay 10 minutes								
*Activation is determined by the Setpoint and Delta values									

If using well-designed in-concrete-floor heating, the heating setpoints may be able to be lowered. Lower heating setpoints will translate directly into a higher COP (efficiency). Heating setpoints should be set to the lowest values that still maintain an acceptable temperature in the building on the coldest day of the year; this may take some trial and error. Increasing Delta values will also increase efficiency due to longer runtimes, and lead to less wear on compressor due to a reduced number of compressor starts.

The maximum water temperature setpoint is **120°F / 49°C**. This is de-rated at cold outdoor temperatures according to the following table, to keep the compressor operating within its envelope. The de-rated setpoint will be shown as "**Actual SP**" in the **Setpoint Control** window. (**Actual SP** will also be reduced by the **Outdoor Reset** feature, described shortly.)

TABLE 21 - Maximum Output Temperature							
Outdoor Max. output temp. °F temp. °F		Outdoor temp. °C	Max. output temp.°C				
above 15°F	120°F	above -9°C	49°C				
11 to 15°F	115°F	-11 to -9°C	46°C				
6 to 10°F	110°F	-15 to -12°C	43°C				
below 6°F	105°F	below -15°C	40°C				

Top Up S1 Function

Enabling this feature allows the stage 1 setpoint to be reached when the actual setpoint is de-rated due to the outdoor temperature being cold (refer to previous table). When disabled, the two compressor stages and stage 3 auxiliary operate normally and shut off at their actual setpoints. When enabled, the heat pump will shut off the compressor at its actual setpoint as usual. The auxiliary will now turn on (if already on, it will continue to be on) and continue up to the stage 1 setpoint. This creates a hybrid system that can maintain the stage1 setpoint even when the heat pump is in de-rated mode for systems that need hotter water than **105°F (41°C)** at all times (although it may result in a significant portion of heat load on a cold day being met by auxiliary heat only).

IMPORTANT NOTE: Do not enable unless auxiliary is operational, since if no auxiliary the compressor will never be re re-enabled (as the setpoint will never be reached).

Summer Setback

The hydronic heating system may be idle for several months in the summer. In this case, the heat pump may be put in **Summer Setback** mode via the PC App's **Tools--> Configuration** window or the LCD interface. It may also be activated by a field-installed switch; see **Wiring** chapter and the wiring (schematic) diagrams in the **Model Specific Information** chapter.

Summer Setback disables stage 3 (AUX), drops setpoints to 70°F (21°C), and decreases temperature sampling frequency to 2 days. This minimizes electric power usage while keeping cast iron head circulation pumps operational.

Outdoor Reset

As mentioned earlier, lower heating setpoints will translate directly into a higher COP (efficiency).

When **Control Source HYD** is set to **Setpoints**, an optional Outdoor Reset control algorithm is available for heating mode, which reduces the heating temperature setpoints at warmer outdoor temperatures as measured by the outdoor unit. To enable it, simply click on the **Outdoor Reset** button at the top of the **Setpoint Control** window. The button will change to say Enabled, the indicator will come on and the Outdoor Reset Table will appear.

The table is created by subtracting the value of the Outdoor Reset Factor from the original setpoints once for each table row . The user-selected Hot Setpoints are located in the top row ($<5^{\circ}F$), and the next row down equals the row above minus the Outdoor Reset Factor. The table row in use based on current outdoor temperature is shown in red.

It can be seen that as outdoor temperature rises and heating load falls, the heating mode buffer tank temperature will be decreased and a higher seasonal efficiency will result.

See screenshot on previous page.

2. Hydronic Heating: Signals Control

PC APP:	Control Source HYD	Signals	~
Tools>Configuration	Setpoints Method		~
LCD Interface: Configuration	Control HYD Si9nals		

Similar to BACnet control, with **Signals Control** the heat pump will turn the 2 compressor stages on and off and activate cooling mode when it is told to by 24VAC signals. These are provided via external dry contacts, most often from a 2-stage aquastat or aquastats (available as accessories). See **Wiring** section. The heat pump's internal control logic will not be used, except to limit temperatures and report operating data and alarms.

Most installations will instead use **Setpoint Control**; however, **Signals Control** provides control flexibility for certain situations, for example if two water loops with different setpoints are being heated. Temperature settings similar to those outlined in the previous **Setpoint Control** section should be used.

When using Signals Control, the backup tank element thermostat can be set to maximum, allowing the electric elements to be controlled by an external contactor placed in the power supply connections (see diagrams in **Wiring** section). The contactor can be connected to stage 2 of the heating aquastat via an optional 0-2 hour timer. Alternatively, tanks with their own programmable controller can be set to run independently with a lower temperature setpoint than the aquastat(s).

PC Application (PC App)

NOTE: Before using the PC Application, refer to Appendices B & C for installation instructions for the PC Application and USB driver for the COM port. Both must be installed in order to run the PC App and communicate with the control board.

Connect a USB cable between the PC and the control board USB connector located at the bottom center of the board. Use the Windows Start menu to launch the PC App. You should see a screen similar to the one below. The revision of the PC APP is shown in the top left corner of the screen. Click the **Connect** button to begin communications with the control board.

🖊 MG	L GEN2	PC APP V2	.00 Co	ntrol Board	Firmware V3.6							-		x
File	View	Graphs	Tools	Windows	Help	Connect OFFLINE		1	POLLING Parameters In Sync O	GRAPH REFRESH	10 secs	~	CLEAR	ALL
				UNITS	STANDARD	MANUAL OVERRIDE	Hydronic Con	ntrol: SETPOINTS 🔾	SYNC Parameters	DATALOG RATE	2 mins	~	GRAP	HS
BACnet	Info - M	AC: 24 Ins	stance: 1	124 Timeou	t: 0:00 Cont	trol Board Date and Time: 25/01	1/2021 14:41:12	GEN2 Board Connected	Read 110 of 110 Objects					

Once connected, the menus and buttons will become accessible, the number of Objects available and Read should appear (they should be the same) and the Polling LED will begin to flash. The PC time and date will appear at the bottom left corner of the screen. Clicking on "Control Board Date and Time" will display the current control board date and time. If the date and time need to be adjusted, click on menu **Tools—Set Date and Time**. The control board date and time will be set to that of the PC.

MGL GEN2 PC APP V2.00 Control Board Firmward	e V3.60					x
File View Graphs Tools Windows Help	Disconnect ONLINE OR ARD MANUAL OVERRIDE	P	OLLING Parameters In Sync GRAPH REFRESH 10 secs SYNC Parameters DATALOG RATE 2 mins	~ ~	CLEAR GRAP	
BACnet Info - MAC: 24 Instance: 124 Timeout: 0:00	Control Board Date and Time: 25/01/	/2021 14:38:27 GEN2 Board Connected	Read 110 of 110 Objects			:

PC Application Menus

The following pages describe the PC APP's menus in detail. There are six menus: File, View, Graphs, Tools, Windows, Help.

File Menu: This menu handles page arrangements. If one or multiple pages are open and arranged as desired for viewing, this page arrangement may be saved and re-used the next time the PC APP is used.

File-->Open:Opens a saved page arrangement.File-->Save:Saves the current page arrangement under the current name.File-->Save As:Save the current page arrangement under a new name.File-->Exit:Exits the PC Application.

Windows Menu: This menu is used to arrange windows (pages), or to bring a particular window to the front.

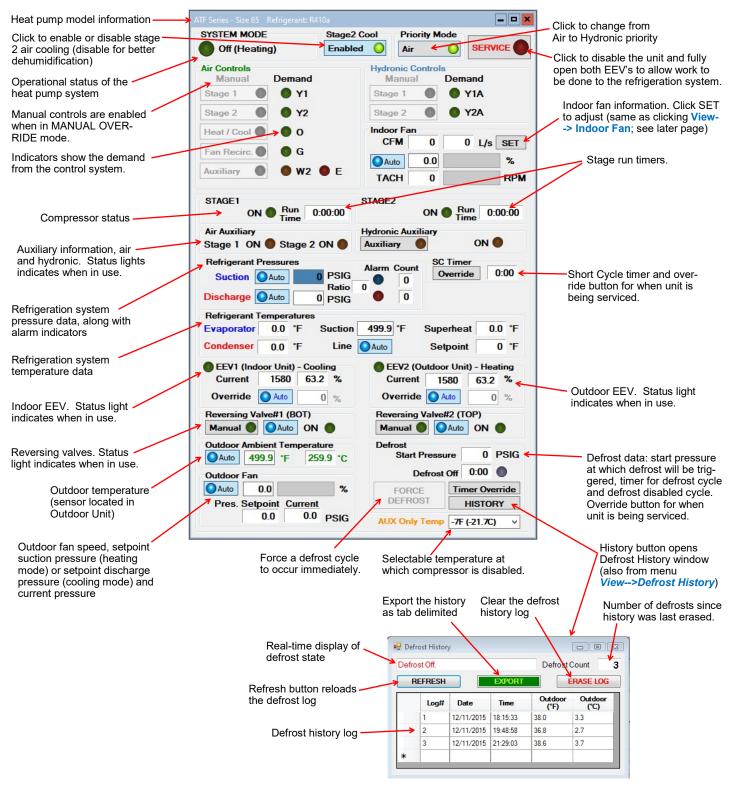
 Windows-->Cascade:
 Arranges windows one in front of the other each with a small right and down offset from the last.

 Windows-->Tile Vertical:
 Arranges windows side by side, stretching them fully from top to bottom.

 Windows-->Tile Horizontal:
 Arranges windows up and down, stretching them fully from left to right

 Windows-->Close All:
 Closes all open windows.

Help Menu: This shows information about the PC Application.


Help-->About: Displays the window shown to the right.

About MGL GEN2 PC	<u>А</u> РР	×
	MGL GEN2 PC Application Version 1.70.0.0 Copyright © 2019 Maritime Geothermal Ltd.	^
		~

View Menu:

This menu handles all of the operational viewing screens. Clicking on the View submenus will open the page in the PC APP's frame. The next few pages of the manual show screenshots of each of the pages along with some descriptions of what is on each page.

View-->Control Panel: The main control panel window will open, shown below.

View-->Setpoint Control:

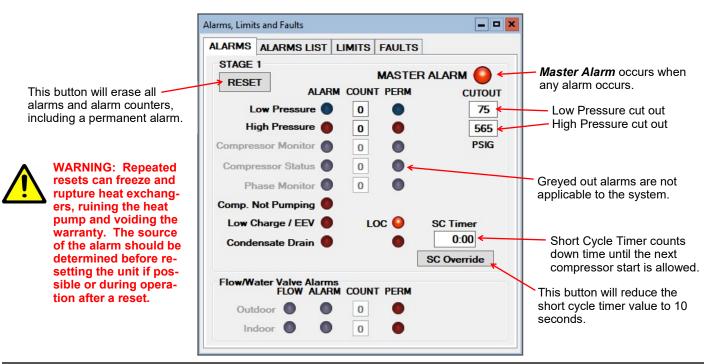
Shows the on-board temperature control screen. This screen is only available when **Control Source HYD** on the Configuration Page is set to **Setpoints** (not **Signals** or **BACnet**).

Refer to the Operation section earlier in this manual for details.

View-->Alarms, Limits and Faults

The alarms page has four tabs:

- 1. ALARMS Current alarm status, alarm count, high and low refrigeration alarm cutout values, and short cycle timer.
- 2. ALARMS LIST List of alarms that have occurred since the PC APP has been operating (this will be lost when the PC is disconnected from the control board.)
- 3. LIMITS Limits in effect which prevent compressor operation but that do not cause an alarm.
- 4. FAULTS List of board hardware faults.


View-->Alarms, Limits and Faults (ALARMS Tab):

NOTE: Greyed out Alarms in the PC APP are not applicable to the system setup and are not monitored by the control board. NOTE: Refer to Alarms and Faults screenshot below to see which alarms have a count.

Alarms without a count: These alarms only occur one time at which point they immediately create a Permanent Alarm.

Alarms with a count:	When an alarm occurs the compressor will stop, the alarm count will increase and the Short Cycle Timer will start. When the SC Timer expires the compressor will re-start. If no further alarms occur within Count Reduce Time , the alarm count will be reduced by 1. If another alarm occurs within Count Reduce Time (see Configuration Page) the count will increase by 1. If alarms continue to occur, when the alarm count reaches the Maximum Count value a Permanent Alarm will occur.
Master Alarm:	This alarm occurs when any permanent alarm occurs. It is used to simply indicate that there is an alarm.
Permanent Alarm:	The compressor will be locked out until the <i>Permanent Alarm</i> is manually reset either by cycling the power or clicking on the <i>RESET</i> button
Low Pressure:	A low pressure alarm occurs when the suction pressure drops to or below the <i>Low Pressure Cutout</i> value. The low pressure is checked just before a compressor start; if it is OK the compressor will start, otherwise an alarm will occur. When the compressor starts, low pressure alarm will be ignored for the number of seconds that <i>Low Pressure Ignore</i> is set to, after which the low pressure alarm will be re-enabled. This allows a dip in suction pressure below the cutout point during startup without causing a nuisance alarm.
High Pressure:	A high pressure alarm occurs when the discharge pressure rises to or above the <i>High Pressure Cutout</i> Value.
Comp. Not Pumping:	Discharge pressure is less than 30 psi higher than suction pressure after 1 minute run time. It indicates leaking reversing valve, manual high pressure control trip, bad contactor, or defective compressor.
Low Charge:	This alarm occurs if the EEV has been at >99% for 20 minutes within first hour of a cycle.
LOC (Loss of Charge):	This alarm occurs if both the low pressure and high pressure sensors are below 30 psig (207kPa).
Condensate Drain:	This alarm occurs if fluid level in the condensate tray rises to the level of the sensor (if equipped).
Multiple Defrosts:	This alarm occurs if a second defrost occurs immediately after the defrost disabled timer expires from a previous defrost cycle. It indicates abnormally low suction pressure.

Go the Alarms Troubleshooting section of the Troubleshooting section of the manual to address alarm issues.

View-->Alarms, Limits and Faults (ALARMS LIST Tab):

This tab show a history of alarms that have occurred since the PC APP was connected to the control board. This list will be lost when the PC APP is disconnected.

Each alarm that occurs while the PC APP is connected to the control board will appear here. The alarm type and a time stamp will be shown. The alarms list will be erased when the PC APP is disconnected from the control board.

ALARMS	ALARMS LIST	LIMITS FAU	LTS		
	CLEAR	ALARMS LIST			
Alarm D	escription		Time	Stamp	
	arge#1 alarm			11:42:51 AM	^
	ENT ALARM#1			11:42:51 AM	
	arge#1 alarm			1:44:43 PM	
	ENT ALARM#1			1:44:43 PM	
	arge#1 alarm			1:44:56 PM	
PERMAN	ENT ALARM#1	12/	18/2018	1:44:56 PM	

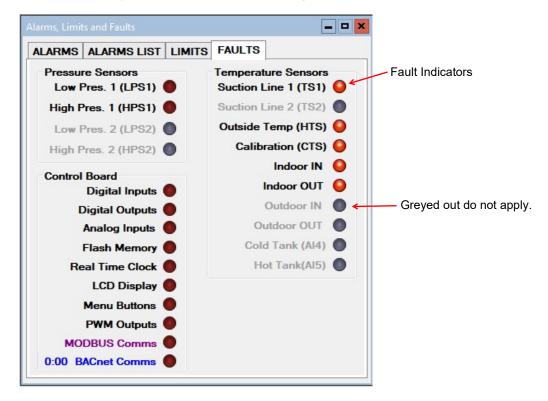
This button will erase the alarm events in the Alarm List.

View-->Alarms, Limits and Faults (LIMITS Tab):

This tab shows temperatures that are out of limits but have not caused an alarm. These limits are shown on the **Tools-->Configuration** page.

onfiguration Page							- 0
Firmware Revision	V3.26	FIRI	MWARE UPDATE		System E	nabled	0
Parameters In Sync (0	Powe	er On Reset (POR)				
System Configuration	Alarms and De	elays					
Model Configuration			Pressure Cutouts		UEATING		
Model Series	ATF	~		Low	HEATING 22		PSIG
Model Size	65	~			565		PSIG
Model Function	HACW	~	Temperature In	High door OUT			Fold
Refrigerant Type	R410a	~	Limits				
Number of Stages	2	~					
FFV Sten Range	2500 (SER)	U					
Al	arms, Limit	s and Fault	s			-	•
	ALARMS	ALARMS	LIST LIMITS	FAUL	rs		
		es Coolin Outside 1	-		oop Lim	its oo Cold	0
	SO OFF	Outside]	Too Hot	Inde	or Out T	on Hot	•

View-->Alarms, Limits and Faults (FAULTS tab):

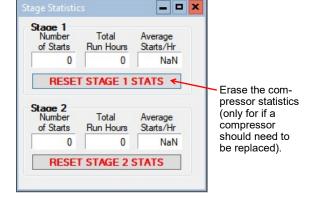

This tab shows hardware faults that could occur. If one of these faults occurs there may be a problem with the control board hardware, with LCD Display and buttons, or with a sensor.

If a fault occurs, some things to try:

- Turn the power to the heat pump off for 20 seconds and then back on again.
- Use the menu item Tools-->Reset to Factory Defaults. If this clears the fault then the system configuration will have to be set up again.
- For LCD Display or Menu Button faults, turn off the power, disconnect and reconnect the cable between the LCD interface board and the control board, then turn the power back on again.

If the fault persists then there is most likely a hardware problem, and the sensor, control board, or LCD interface board will need to be replaced.

IMPORTANT NOTE: If the Indoor OUT (I_OUT) probe is faulty or disconnected, neither hydronic heating nor the auxiliary will operate if using Setpoint Control. They will continue to operate under Signals or BACnet control.



View-->Defrost History:

Same as clicking on HISTORY button in Control Panel window (see previous page).

View-->Stage Stats:

The compressor information: number of starts, run hours and starts per hour.

View-->Set Stage 2 Delay:

Sets the delay before stage 2 is engaged on a stage 1 demand. Set to "0" for no stage 2 engaged on a stage-1-only demand from thermostat.

Set Stage 2 Delay		×				
Delay Value:	0 🔶	mins				
Forced ON in:	0:00					
Timer Override						

View-->Indoor Fan

Shows the settings screen for the indoor fan/blower. Airflow may be adjusted up or down by the user within the allowed range. See **Indoor Airflow Data** section in the **Model Specific Information** chapter for airflow ranges.

NOTE: This screen may also be accessed from the SET button of the Indoor Fan section of the Control Panel screen.

Digital Inputs

DI_0

DI_1

DI 2

AR

Auto

Auto

Auto

Auto

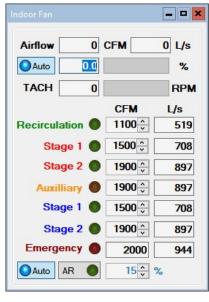
View-->Set Air Auxiliary Delays

Sets the delay before auxiliary air heat (plenum heater) is engaged on a stage 1 or stage 2 demand.

Set to "0" for no auxiliary heat engaged on a compressor-only demand from thermostat.

View-->Water Lines

Shows the water line temperatures.


View-->Digital Inputs

Shows the digital inputs and their individual status (ON/OFF). They may be individually controlled when in Manual Override Mode in order to facilitate troubleshooting.

View-->Digital Outputs

Shows the digital outputs and their individual status (ON/OFF). They may be individually controlled when in Manual Override Mode in order to facilitate troubleshooting.

Digital Out	puts				_ 🗆 🗙
O Auto	STAGE1	Auto	PHS1	Auto	L1 O
Auto	STAGE2	Auto	PHS2	Auto	L2
Auto	RV1	Auto	OV1 🔵	Auto	L3
O Auto	RV2	Auto	IV1	Auto	IHYD AUX 🔘
Auto	SOL1	Auto	HYD_AUX	Auto	L5 🔵
Auto	SOL2	Auto	DO 3	Auto	L6
O Auto	ICR	Auto	L(Lockout) 🥥	Auto	SH 🔵

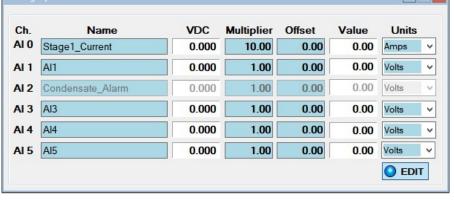
- O X

PM 1

PM 2

ODFLO

IDFI O


View-->Analog Inputs

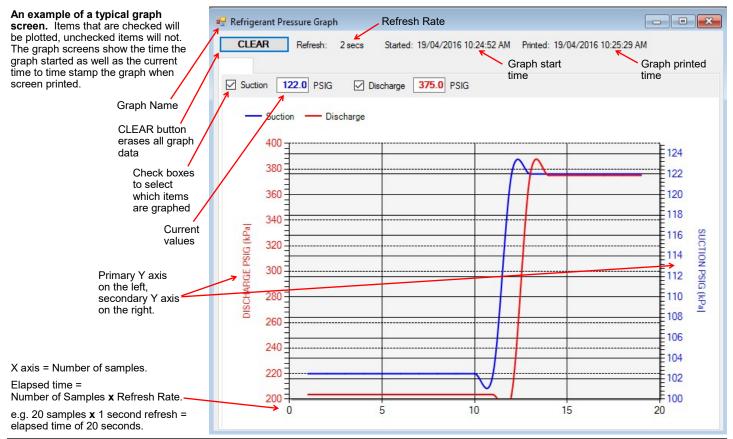
Shows the Analog inputs and their individual settings and values.

Click on the *EDIT* button to modify the blue boxes (button will now say *SAVE*). For each channel a name may be selected (up to 16 characters), and the multiplier and Offset values may be set to accommodate the connected sensor scaling. Signals may be 4-20mA (channel jumper on board ON) or 0-10VDC (channel jumper on board OFF). A variety of units are also available for selection of common measurement types. Click on *SAVE* to save the changes. Values are kept even when power is removed from the unit.

View-->PWM Channels

Shows the PWM channels and their individual status (0-100%). They may be individually controlled when in Manual Override Mode in order to facilitate troubleshooting.

- 🗆 🗙

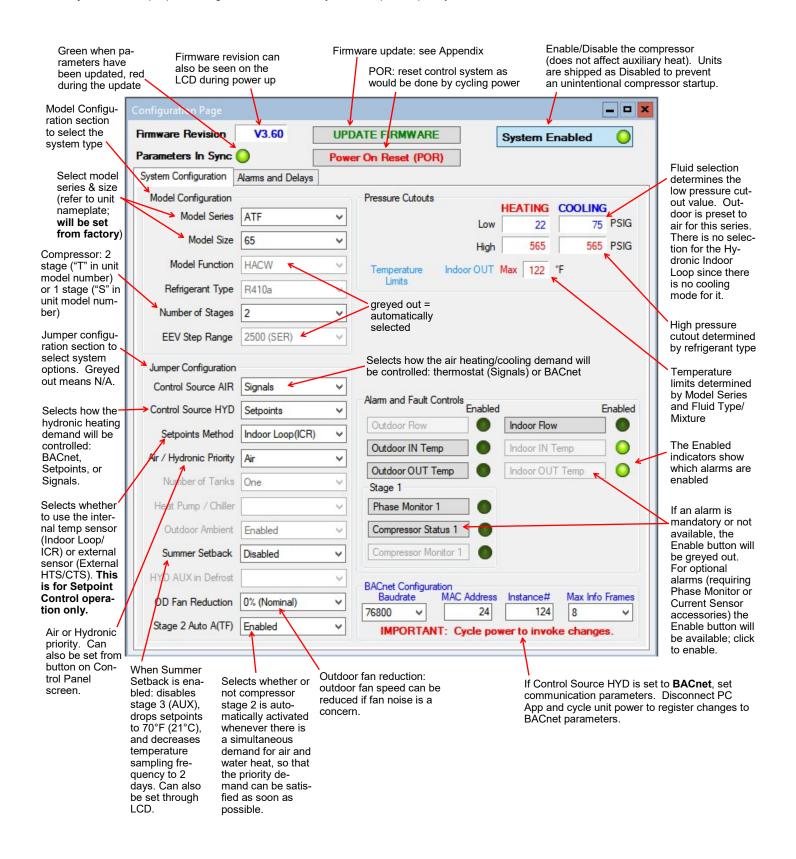

Graphs Menu:

This menu is a list of the available graphs. Graphs are real-time and show a time stamp of when the recording started as well as a current time which will show up if the graph is screen captured. Each graph has a CLEAR button which will erase the stored data and restart the graph. There is also a master CLEAR ALL GRAPHS button at the top right of the PC APP; this will clear all open graphs and re-start them all simultaneously to keep them in sync with each other. The refresh rate for the graphs is also located at the top right of the PC APP.

					_	×
JS 🔵 POI	Parameters In Sync O	GRAPH REFRESH	10 secs	~	CLEAR ALL	
TS 🔘	SYNC Parameters	DATALOG RATE	2 mins	~	GRAPHS	

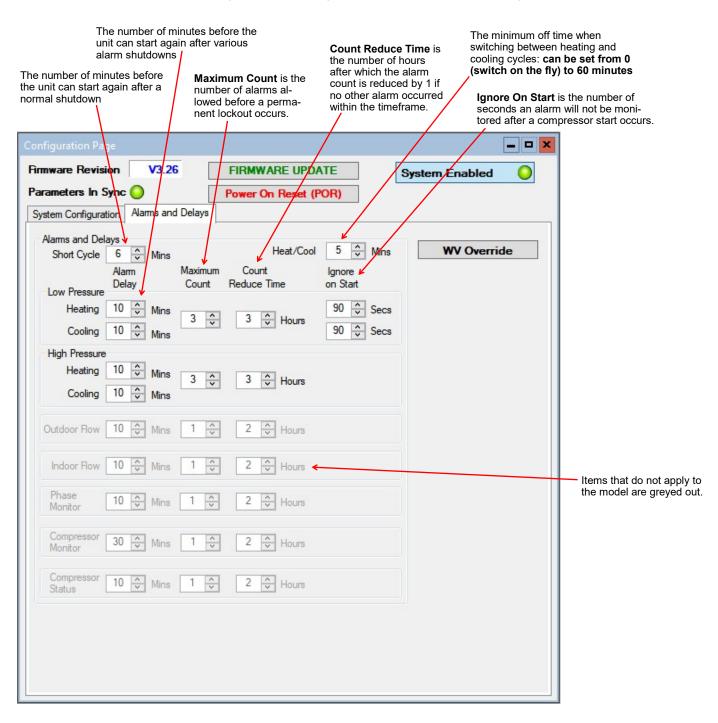
TIP: To screen print a graph and save it as a picture, hold down the Windows key and press Print Screen on the keyboard. The image on the screen will be saved to the folder C:\Users\Username\Pictures\Scr eenshots.

Graphs Tools Windows Help Discor	
Control Signals Graph	ON/OFF status of the system control signals (demands)
Operation Mode Graph	ON/OFF status of air heating, water heating, and air cooling modes
Output Signals Graph	ON/OFF status of digital outputs
EEV Position / Superheat Graph	EEV position and resulting superheat
Vapor Line Temperature Graph	Suction temperature
Refrigeration Pressure and Temperature Graphs	Suction and discharge pressures, evaporating and condensing temperatures
Outdoor Fan Graph	Suction (heating) or discharge (cooling/defrost) pressure vs. outdoor fan speed
Outdoor Temperature Graph	Suction (heating) or discharge (cooling/defrost) pressure vs. outdoor temperature
Water Lines Graph	Indoor IN/OUT temperatures and delta T
Discharge Pressure Vs Hot Tank Graph	Discharge pressure vs tank temperature
Analog Input Graphs	All analog input channels (0-10VDC or 4-20mA).
PWM Channels Graph	All PWM / 0-10VDC output channels and one PWM / 0-10VDC input channel.
BACnet Timeout Graph	For troubleshooting synchronization with 3rd party BACnet controllers.



Tools Menu:

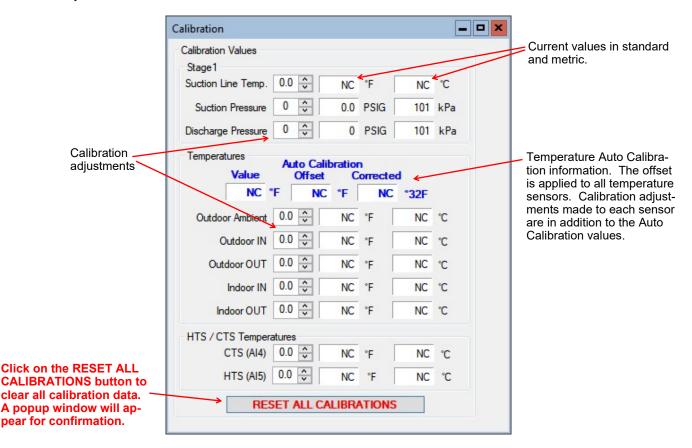
This is where various tools for system setup and monitoring are located.


Tools-->Configuration (System Configuration tab):

This is where the system setup is done. Settings should only be changed by a person who has a good understanding of system operation. Improper settings could cause the system to operate poorly or not at all.

Tools-->Configuration (Alarms and Delays tab):

Click on the UP/DOWN arrows to change the value, noting that values have both a low and high limit.



Tools-->Calibration:

Generally there is no need for calibration.

The suction and discharge pressures may be calibrated in increments of 1 psi if there is a discrepancy in the readings when compared to a known good reference.

Temperature sensors may be adjusted in increments of 0.1°F. There is an **AUTO CALIBRATION** routine in the program that continually calibrates the temperatures sensors against an on board reference resistor by applying an offset to the temperature sensors. Calibration adjustments made here are in addition to the Auto Calibration routine.

Tools-->Reset to Factory Defaults:

This will reset all parameters to default values.

THE SYSTEM MUST BE RECONFIGURED AFTER A RESET IS PERFORMED.

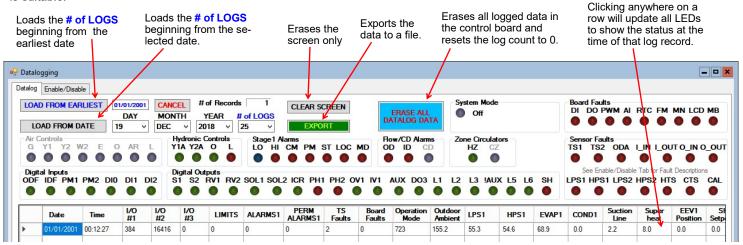
A reset will default the system to a two stage ATW Series Size 65 with Signals as the control source. Calibrations, alarm delays, analog configurations, compressor statistics, and Setpoint Control values will be returned to defaults as well.

	-
<u>.</u>	Reset Parameters to Factory Defaults? WARNING!!! SYSTEM MUST BE RE-CONFIGURED FOR PROPER OPERATION. All parameters will be reset to defaults including Calibrations, Analog Configurations and Compressor Stats.
	Yes No Cancel

Tools-->Set Date and Time:

This will synchronize the date and time of the control board with the computer's date and time, and will be necessary for new units or units that have been powered off for several days or more.

The date and time of both the computer and the control board are shown in the status bar at the bottom of the PC App.


Tools-->Datalogging (Datalog tab):

A log will be automatically recorded at the following rates:

- SYSTEM DISABLED: every 10 minutes
- SYSTEM ENABLED: logging frequency set via the dropdown box at the top right of the PC App main window
- ALARM: logging frequency automatically set to 10 seconds, for 2 hours
- PERMANENT ALARM: every 10 minutes

The maximum number of datalog records is 32,224, which will take 45 days to fill up at the default recording rate of 2 minutes.

Note that loading datalogs is time-consuming. It is suggested to leave the **# of LOGS** at **25** until it is shown that the start date selected is suitable.

Tools-->Datalogging (Enable/Disable tab):

Click on the checkboxes to customize which columns are shown/hidden in the datalog table.

alog Enable/Disable					
Board Faults - Digital Inputs O - Digital Outputs WM - PWM Outputs D - A/D Converter TC - Real Time Clock M - EEPROM IN - Menu Buttons CD - LCD Display B - MODBUS Comms	Temp Sensor Faults TS1 - Vapour Line1 TS2 - Vapour Line2 ODA - Outdoor Ambient CAL - Calibration L_IN - Indoor IN I_OUT - Indoor OUT O_IN - Outdoor OUT O_IN - Outdoor OUT HTS - Hot Tank (AI5) CTS - Cold Tank (AI4) Pressure Sensor Faults LPS1 - Low Pressure 1	Temp Sensors ♥ Outdoor Ambient ♥ I_IN ♥ I_OUT ♥ 0_IN ♥ 0_OUT	Analog IN Group ALL ANALOG Analog IN CH0 Analog IN CH1 Analog IN CH2 Analog IN CH3 Analog IN CH3 Analog IN CH4 Analog IN CH5	PWM Group ALL PWM PWM1 PWM2 OV2(%) IV2(%) PWM IN	MODBUS Group ALL MODBUS MODBUS Data 1 MODBUS Data 2 MODBUS Data 3 MODBUS Data 3 MODBUS Data 4 MODBUS Data 5
	HPS1 - High Pressure 1 LPS2 - Low Pressure 2 HPS2 - High Presssure 2				

Tools-->MODBUS:

For future use.

Tools-->Objects:

This is a window to display the runtime data, which is not stored when the power is turned off. No changes are possible.

Number	Name	Туре	Present Value	Setpoint	Status Bits	Out of Service	ALARM	FAULT
46	ESX_TS2	Analog Input	0.0	0	0	False	False	False
47	ESX_TS3	Analog Input	0.0	0	0	False	False	False
48	ESX_TS4	Analog Input	0.0	0	0	False	False	False
49	ESX_TS5	Analog Input	0.0	0	0	False	False	False
50	ESX_TS6	Analog Input	0.0	0	0	False	False	False
51	LPS1	Analog Input	0.0	0	0	False	False	False
52	HPS1	Analog Input	0.0	0	0	False	False	False
53	LPS2	Analog Input	0.0	0	0	False	False	False
54	HPS2	Analog Input	0.0	0	0	False	False	False
55	INDOOR_FAN_TAC	Analog Input	0.0	0	0	False	False	False
56	AIO	Analog Input	0.0	0	0	False	False	False
57	Al1	Analog Input	0.0	0	0	False	False	False

Tools-->Parameters:

WARNING! The Parameters page is for advanced use only. Changing parameter values can cause the system to stop functioning properly.

The parameters page shows all configurable memory spaces with their name and current value and allows them to be edited directly. To change a parameter value type in the new value and press ENTER.

System Parameters		System	Parameters	
WARNING!!! Changing System Parameters of improperly. Do you wish to continue?	ould cause ti	ne system to operate	Parameters hav	ve been updated.
Yes	N	D Cancel		ОК
Clicking on menu item Tools>Parameters will display this warning.	🖳 Par	SYNC Parameters		×
Click on YES to open the parameters page.		Name	Value	~
		MODEL SERIES	9	■ Type in the new value
		MODEL SIZE	9	and press ENTER, the
Click this button to reload the able with the values from the		MODEL FUNCTION	3 🗲	confirmation popup will appear, click on OK .
control board memory.		REFRIGERANT_TYPE	0	
		HEATING_SUPERHEAT_SETPOINT	8	
		COOLING_SUPERHEAT_SETPOINT	8	
		JUMPERS	7169	
		JUMPERS2	64	
		ALARM_MASKS	4	
		TS_FAULT_MASKS	249	
		CONTROL SOURCE AIR	1	

Tools-->SYSTEM TIMERS:

This page shows all internal timers by name along with their current values.

	Name	Value	Time Value
•	Stage 1 Short Cycle Timer	0	0:0
	Stage 2 Short Cycle Timer	0	0:0
	Stage 1 Runtime	0	0:00:0
	Stage 2 Runtime	0	0:00:0
	Stage 2 Timed ON in:	0	0:0
	Air Auxiliary S1 Timed ON in:	0	0:0
	Air Auxiliary S2 Timed ON in:	0	0:0
	Hydronic Auxiliary Timed ON in:	0	0:0
	Indoor Loop Circulator Sampling	0	0:0
	Outdoor Reset Hold	0	0:0
	Wait to Defrost	0	0:0
	Defrost Timer	0	0:0
	Defrost Hold Previous Values (Temp Rise)	0	0:0
	Defrost Switch Delay	0	0:0
	Stage 1 Low Pressure Ignore	0	0:0
	Stage 2 Low Pressure Japane	0	0.1

Tools-->Jumpers:

This page shows internal jumper configurations, for developers.

JUMPERS 7169		
Unused Y2 Disabled in Cooling Heat(0) / Cool(1) Priority Stages - One(0) / Two(1)	Summer Setback Enabled PC Rejection - Room(0) / Pool(1) Units Heater(0) / Chiller(1)	Outdoo Setr
0001	1 1 0 0	00
15 12	11 8	7
JUMPERS 2 64		
Unused Spare Cold Tank Enabled Hot Tank Enabled	S1 Top Up Enabled System Enabled (ICR/HYD AUX) Stage2 Enabled Stage1 Enabled	HYD A MO I
0000	0000	010
15 12	11 8	7

LCD Interface & Menus

These are examples of the unit status and operating data displayed when at the message display level (top level). Pressing ENTER will enter into the menu levels beginning with the Main Menu.

Menu Tree: This is a list of the various tools are used for system setup and monitoring. The table shows what is displayed based on each press of the ENTER button starting at the Main Menu level. **ENTER ENTER ENTER ENTER** Description (From Main) (First Press) (Second Press) (Third Press) Setpoint Control Setpoints – Heating Stage 1 stops when water temperature Stage 1 Setpoint (only if using rises to this point. Setpoint Control) Stage 1 starts when water temperature Stage 1 Delta drops below setpoint by this amount. Stage 2 stops when water temperature Stage 2 Setpoint rises to this point. Stage 2 starts when water temperature - Stage 2 Delta drops below setpoint by this amount. Stage 3 stops when water temperature - AUX (S3) Setpoint rises to this point. Stage 3 time delay starts when water temperature drops below setpoint by this – AUX (S3) Delta amount. (Stage 3 starts immediately if time delay is set to 0). Delays Stage 3 start by timer amount. AUX (S3) Delay **Outdoor Reset** Temperature factor to use in the outdoor (only if enabled) reset table.

continued on next page ...

ter menu level.

parameter menu level.

... continued from previous page

ENTER (From Main)	ENTER (First Press)	ENTER (Second Press)	ENTER (Third Press)	Description
	— Enable Setback?	— Enable		Enable summer setback.
(only if using Setpoint Control)		— Disable		Disable summer setback.
System EN/DIS	— Enable System?	— Disable		Disable compressor, auxiliary and ICR.
		— Enable		Enable compressor, auxiliary and ICR.
Service Mode	— Service Mode?	— No		Do not enter Service Mode.
		— Yes		Enter into Service Mode.
EEV Control	— EEV1 (Local)	— Auto/Manual	— Auto	Puts EEV in Auto mode
			— Manual	Puts EEV in Manual mode
		— Manual Position	— EEV Position (%)	Sets EEV to manual position
	— EEV2 (Remote)	— Auto/Manual	— Auto	Puts EEV in Auto mode
			— Manual	Puts EEV in Manual mode
		— Manual Position	— EEV Position (%)	Sets EEV to manual position
Configuration	— Priority	— Air		Sets the priority to air modes.
		— Hydronic		Sets the priority to hydronic mode.
	— Control AIR	— Signals		Hardwired air thermostat control.
		— BACnet		BACnet control - see BACnet section
	— Control HYD	— Setpoints		On-board water temperature control - see Setpoint Control section.
		— Signals		Hardwired / aquastat control.
		— BACnet		BACnet control - see BACnet section
	— Outdoor Reset (only if using Setpoint	— Enable		Enables Outdoor Reset functionality
	Control)	— Disable		Disables Outdoor Reset functionality
	— Setpoints Method	— ICR		Use Indoor Circulator Relay sampling
	(only if using Setpoint Control)	— HTS/CTS		Use external hot tank temperature sense
	— OD Fan Reduction	— Reduction (%)		Outdoor fan speed reduction in %.
	— Time Delays	— Short Cycle	— Delay (min)	Short-cycle timer delay in minutes
		— Heat/Cool	— Delay (min)	Heat / Cool timer delay in minutes
	— Units	— Standard		Standard units
		— Metric		Metric units (does not affect calibration units)
	— Set Time	— Hours	— Hours value	Set the system hours.
		— Minutes	— Minutes value	Set the system minutes.
	— Set Date	— Day	— Day value	Set the system day.
		— Month	— Month value	Set the system month.
		— Year	— Year value	Set the system year.
Calibration	— Suction 1	— calibration adj.		Calibration in 1PSI intervals.
	— Discharge 1	– calibration adj.		Calibration in 1PSI intervals.
	— Vapour Line 1	– calibration adj.		Calibration in 0.1°F intervals
	- Outdoor Ambient	— calibration adj.		Calibration in 0.1°F intervals
	— Indoor IN Temp	— calibration adj.		Calibration in 0.1°F intervals
		— calibration adj.		Calibration in 0.1°F intervals

NOTE: Calibration is generally not required. Pressure sensors may be calibrated against a known source if needed. All temperature sensors have an Auto Calibration feature.

BACnet Interface

The BACnet interface is an **MS/TP** connection via RS-485 twisted pair. BACnet **IP** is not available. Recommended wire: 22-24 AWG single twisted pair, 100-120 Ohms impedance, 17pF/ft or lower capacitance, with braided or aluminum foil shield, such as Belden 9841 or 89841.

The connector on the control board is a three wire removable screw connector. The signals are as follows:

- A: Communications line (+) (right pin)
- B: Communications line (-) (middle pin)
- C: Ground connection (left pin)

If connecting multiple units to one RS-485 connection point, connect the signal cable from the master building controller to the first unit. Connect the second unit to the first unit (in same connector), connect the third unit to the second unit, and so on until all units are connected (daisy-chain). Remove the TERM jumper (located just above the BACnet connector on control board) from all units except the last one. The shield ground should be connected only to the GND pin of the unit for single unit installations. For multiple units, the shield ground should only be connected to the GND pin of the last unit. The shield grounds for intermediate units should be connected together. The shield ground should be left unconnected at the building controller end for all cases.

Vendor: Maritime Geothermal Ltd. Vendor ID: 260 Model Name: MGT GEN2 Control Board

The following parameters can be set via the PC App's Configuration Window:

1) Baud rate

9600, 19200, 38400, or 76800

- 2) MAC address Maximum value is 125.
- Instance number Maximum value is 4194303.

IYD AUX in Defrost	Y	BACnet Configu			
OD Fan Reduction	~	Baudrate	MAC Address	Instance#	Max Info Frame:
		76800 🗸	125	980000	8 🗸
		IMPORTA	NT: Cycle por	ver to invok	e changes.

The BACnet parameter **Max_Master** has a fixed value of **127** in this device.

BACnet data is available regardless of the selected control method. In order to control the unit via the BACnet interface, set **Control Source** to **BACnet** either by using the PC App's *Configuration* window or the LCD menus.

TABLE 22 - BA	TABLE 22 - BACnet OBJECTS - CONTROL SIGNALS (READ/WRITE)					
Name	Data Type	ID	Property	Description		
SYSTEM_Y1A	Binary Value	BV0	Present Value	Demand for hydronic (water) heating (active is on)		
SYSTEM_Y2A	Binary Value	BV1	Present Value	Demand for stage 2 hydronic (water) heating (active is on)		
SYSTEM_O	Binary Value	BV2	Present Value	Switch to air cooling mode (RV#1). Inactive=HEATING, Active=COOLING		
SYSTEM_Y1	Binary Value	BV3	Present Value	Demand for air heating or cooling (active is on)		
SYSTEM_Y2	Binary Value	BV4	Present Value	Demand for stage 2 air heating or cooling (active is on)		
SYSTEM_W2	Binary Value	BV5	Present Value	Demand for air auxiliary heat / plenum heater (active is on)		
SYSTEM_G	Binary Value	BV6	Present Value	Demand for air recirculation (active is on)		
SYSTEM_AR	Binary Value	BV7	Present Value	Demand for airflow reduction (active is on)		
BACnet_Units	Binary Value	BV9	Present Value	Select the units to use for the BACnet objects		
Note: object nam	es may be subje	ct to cha	ange without pric	or notice.		

Name	Data Type	ID	Present Value	Description
			0	Air heating
			1	Air cooling
			2	Hydronic (water) heating
Operation Mode	Analog Value	AV5	9	Air heating off
			10	Air cooling off
			11	Hydronic (water) heating off

ТА	BLE 24 - BACnet OE	BJECT	S - DATA (Read	Only)	
	Name	ID	Property	Units	Description
	AI0 (Comp1_Current)	AI0	Present Value	Amps	Compressor current draw (Al0) - requires accessory
	Al1 (Comp2_Current)	Al1	Present Value	User	User defined (0-5VDC or 4-20mA)
	Al2	Al2	Present Value	User	User defined (0-5VDC or 4-20mA)
	Al3	AI3	Present Value	User	User defined (0-5VDC or 4-20mA)
	AI4 (CTS)	Al4	Present Value	degF (degC)	User defined (0-5VDC or 4-20mA)
	AI5 (HTS)	AI5	Present Value	degF (degC)	Hot tank temperature from sensor - requires accessory
	LPS1	Al6	Present Value	PSIG (kPa)	Low pressure value (suction pressure)
	HPS1	AI7	Present Value	PSIG (kPa)	High pressure value (discharge pressure)
	EVAP1	Al8	Present Value	degF (degC)	Evaporating Temperature
ut	COND1	Al9	Present Value	degF (degC)	Condensing Temperature
dul	Suction Line 1	AI10	Present Value	degF (degC)	Suction line temperature
- Analog Input	Superheat 1	AI11	Setpoint Value	degF (degC)	Superheat
Jalo	EEV1 Position	AI12	Present Value	%	EEV1 position (% open)
Ā	LPS2	AI13	Present Value	PSIG (kPa)	N/A
Type	HPS2	AI14	Present Value	PSIG (kPa)	N/A
Ę	EVAP2	AI15	Present Value	degF (degC)	N/A
	COND2	AI16	Setpoint Value	degF (degC)	N/A
	Suction Line 2	AI17	Present Value	degF (degC)	N/A
	Superheat 2	AI18	Setpoint Value	degF (degC)	N/A
	EEV2 Position	AI19	Present Value	%	EEV2 position (% open)
	Outside Ambient	AI20	Present Value	degF (degC)	Outdoor Ambient temperature
	O IN	Al21	Present Value	degF (degC)	N/A
	0 OUT	AI22	Present Value	degF (degC)	N/A
	 I IN	AI23	Present Value	degF (degC)	Indoor IN temperature
	I_OUT	Al24	Present Value	degF (degC)	Indoor OUT temperature
	PWM IN	AV0	Present Value	%	PWM input (from external source)
	 PWM1 (OD Fan)	AV1	Present Value	%	Outdoor fan speed
	PWM2	AV2	Present Value	%	PWM output value (spare)
nalog Value	PWM3 (OV2)	AV3	Present Value	%	PWM output value (spare)
N S	PWM4 (IV2)	AV4	Present Value	%	IV2 - PWM or 0-10VDC for indoor loop water valve
log	Operation Mode	AV5	Present Value	N/A	Description of mode - see Operation Mode Description table
	Limits description	AV6	Present Value	N/A	Description of active limits - see Limits Description table
∀ - 0	Permanent Alarms 1	AV7	Present Value	N/A	Description of active alarms - see Alarm Descriptions table
Type	Permanent Alarms 2	AV8	Present Value	N/A	N/A
É.	Board Faults	AV9	Present Value	N/A	Description of active faults - see Fault Descriptions table
	Sensor Faults	AV10	Present Value	N/A	Description of active faults - see Fault Descriptions table
	Defrost Mode	AV11	Present Value	N/A	Descr. of defrost status - see Defrost Mode Description table
	STAGE1	BO0	Present Value	N/A	Compressor contactor
ŗ	STAGE2	BO1	Present Value	N/A	Compressor stage 2 solenoid
utp	ICR (Indoor Circ)	BO2	Present Value	N/A	Indoor circulator control
- Binary Output	DO0 (OV1)	BO3	Present Value	N/A	N/A
าลท	DO1 (IV1)	BO4	Present Value	N/A	IV1 (to 24VAC Indoor Loop water valve)
Bir	DO2 (HYD_AUX)	BO5	Present Value	N/A	Hydronic Auxiliary
ė	DO3 (AUX_ONLY)	BO6	Present Value	N/A	Hydronic Auxiliary Only (without compressor)
Type	PHS1	BO7	Present Value	N/A	Air plenum heater stage 1
	PHS2	BO8	Present Value	N/A	Air plenum heater stage 2
<u>e</u>	CONTROLS	BV9	Present Value	N/A	Control Indicator, 0 = Local (manual override), 1 = Remote
- Binary Value	Outdoor Flow	BV10	Present Value	N/A	N/A
~	Indoor Flow	BV11	Present Value	N/A	N/A
nar	Phase Monitor1	BV12	Present Value	N/A	Phase Monitor Stage 1 - requires accessory
Bi	Phase Monitor2	BV12 BV13	Present Value	N/A	N/A
	Comp Monitor1	BV13 BV14	Present Value	N/A	N/A
Type	Comp Monitor 2	BV14 BV15	Present Value	N/A	N/A
-		010		IN/ <i>F</i>	

Name Data Type ID Present Value Description				Description			
Defrost Mode	Analog Value	AV11	0	Off (normal heating operation)			
			1	Waiting to re-check low pressure			
			2	Entering Defrost Mode			
			3	Waiting for EEV's			
			4	Waiting for pressures to equalize			
			5	Defrosting			
			6	Completing Defrost Mode			
			7	Exiting Defrost Mode			
			8	Defrost disabled			

Name	Data Type	ID		Description		
AI0 (Comp1 Current)	Analog Input	Al0	Stage 1 Sta	tus alarm (Start / Stop Failure) - requires accessory		
Al1 (Comp2 Current)	Analog Input	Al1	N/A	N/A		
LPS1	Analog Input	Al6	Low pressu	ow pressure alarm		
HPS1	Analog Input	AI7	High pressu	ure alarm		
LPS2	Analog Input	AI13	N/A			
HPS2	Analog Input	AI14	N/A			
Outdoor Flow	Binary Value	BV10	N/A			
Indoor Flow	Binary Value	BV11	N/A			
Phase Monitor1	Binary Value	BV12	Phase Mon	itor alarm - requires accessory		
Phase Monitor2	Binary Value	BV13	N/A			
Comp Monitor1	Binary Value	BV14	N/A			
Comp Monitor2	Binary Value	BV15	N/A			
Name	ID	BIT #	Decimal Value*	Bit Description		
		0	1	Master permanent alarm (occurs when any alarm occurs)		
		1	3	Low pressure heating mode alarm (suction pressure)		
		2	5	Low pressure cooling mode alarm (suction pressure)		
		3	9	High pressure heating mode alarm (discharge pressure)		
		4	17	High pressure cooling mode alarm (discharge pressure)		
Permanent Alarms 1 (Present Value)	AV7	5	33	Loss of charge alarm		
、 /		6	65	Phase monitor alarm - requires accessory		
		7	129	Compressor monitor alarm - N/A		
		8	257	Status alarm - N/A		
		14	16,385	N/A		

Note: Permanent Alarm objects are type Analog Value but values are bit coded and may be decoded as such (integer value) Note * : Value is for a single alarm and reference only. Value includes +1 for Master Alarm

Note: object names are subject to change without prior notice.

Name	ID	BIT #	Decimal	Bit Description	
		1	Value*	High Indoor OUT temperature	
Limits	AV6	12	4,096	Stage 1 disabled - Outdoor Ambient too hot	
Present Value)		13	8,192 Stage 2 disabled - Outdoor Ambient too hot		
Note: Limits object	is type Analog \	/alue but	value is bit code	ed and may be decoded as such (integer value).	
Note * : Value is fo	or a single alarm	and refe	rence only.		
TABLE 28 - BAG	Cnet OBJECT	S - FAU	ILT Descriptio	ons (Read Only)	
Name	Data Type	ID		Description	
Al4 (Cold Tank)	Analog Input	Al0	N/A		
AI5 (Hot Tank)	Analog Input	Al1	Hot tank temperature sensor faulty or disconnected - requires accessory		
LPS1	Analog Input	Al6	Low pressure s	sensor faulty or disconnected	
HPS1	Analog Input	Al7	High pressure	sensor faulty or disconnected	
LPS2	Analog Input	AI13	N/A		
HPS2	Analog Input	AI14	N/A		
Suction Line1	Analog Input	AI10	Suction line 1 t	emperature sensor faulty or disconnected.	
Suction Line2	Analog Input	Al17	N/A		
Outside Ambient	Analog Input	Al20	Outdoor temperature sensor faulty or disconnected		
O_IN	Analog Input	Al21	N/A		
O_OUT	Analog Input	Al22	2 N/A		
I_IN	Analog Input	Al23	Indoor IN temp	erature sensor faulty or disconnected.	
I_OUT	Analog Input	Al24	Indoor OUT ter	nperature sensor faulty or disconnected.	
Name	ID	BIT #	Decimal Value*	Bit Description	
		0	1	Digital inputs	
		1	2	Digital outputs	
		2	4	PWM outputs	
Board Faults	AV9	3	8	Analog to digital conversion	
(Present Value)		4	16	Real time clock	
		5	32	EEPROM memory	
		6	64	Menu buttons	
		7	128	LCD interface	
		0	1	Suction line 1 temperature	
		1	2	N/A	
		2	4	Outdoor Ambient temperature	
		3	8	Calibration temperature resistor plug	
		L	16	Indoor IN temperature	
Sensor Faulte		4	10		
Sensor Faults (Present Value)	AV10	4 5	32	Indoor OUT temperature	
	AV10			· · ·	
	AV10	5	32	Indoor OUT temperature	
	AV10	5 6	32 64	Indoor OUT temperature N/A	

Note: Board and Sensor Fault objects are type Analog Value but values are bit coded and may be decoded as such (integer value). Note * : Value is for a single fault and reference only.

Startup Procedure

The ATF-Series Two-Stage R410a Startup Record located in this manual is used in conjunction with this startup procedure to provide a detailed record of the installation. A completed copy should be left on site, a copy kept on file by the installer and a copy should be sent to Maritime Geothermal Ltd.

Check the boxes or fill in the data as each step is completed. For data boxes, circle the appropriate units.

Pre-Start Inspection

Outdoor Unit:

- **1.** Ensure the system has been pressure tested, vacuumed to 500 microns and any extra charge required has been added.
- 2. Ensure both access valves have been fully opened and the caps have put been back on and tightened. Check the caps for leaks.
- 3. Ensure the outdoor unit is securely mounted in place.
- 4. Ensure the power and controls signals to the outdoor unit are properly connected, neat, and securely fastened.
- 5. Ensure fan outlet is clear of obstructions.

Ductwork:

- 1. Verify that all ductwork has been completed and is firmly attached to the unit. Verify that any dampers or diverters are properly set for operation of the heat pump.
- 2. Verify that all registers are open and clear of any objects that would restrict the airflow.
- 3. Verify that a new air filter is installed and the cover is secured.
- 4. Verify the condensate drain is connected, properly vented, and free of debris.
- 5. If a plenum heater has been installed, verify that it is securely fastened.

Indoor Loop (Hydronic Loop):

- 1. Verify that all shutoff valves are fully open and there are no restrictions in the piping from the heat pump to the indoor loop, and that full flow is available to the heat pump.
- 2. Verify that the entire system has been flooded and all the air has been purged as much as possible. Further purging may be required after the system has been operating for a while.
- 3. Verify that the loop contains the proper mix of antifreeze (if used) for the intended application. If applicable, record the type of antifreeze and the mixture value on the startup sheet; circle % vol. or % weight.
- 4. Record the static loop pressure on the startup sheet.

Domestic Hot Water:

- 1. Verify that all shutoff valves are fully open and there are no restrictions in the piping from the heat pump to the domestic hot water tank.
- 2. Verify that the entire system has been flooded and all the air has been purged as much as possible. Further purging may be required after the system has been operating for a while.
- **3.** Verify that the brown wire with the insulated terminal is disconnected in the electrical box. Refer to the schematic diagram for more information.

Electrical:

- 1. Ensure the power to the unit is off.
- 2. Verify all high voltage connections. Ensure that there are no stray wire strands, all connections are tight, and the ground wire is connected tightly to the ground connector.
- 3. Record the circuit breaker size and wire gauge for the heat pump.
- 4. Verify that the control connections to the unit are properly connected and all control signals are off, so that the unit will not start up when the power is turned on.
- 5. Verify that the circulator pumps are connected to the proper voltage terminals in the heat pump. Record the voltages of the circulator pumps.
- 6. Ensure all access panels except the one that provides access to the electrical box are in place.

Unit Startup

The unit is now ready to be started. The steps below outline the procedure for starting the unit and verifying proper operation of the unit. It is recommended that safety glasses be worn during the following procedures.

IMPORTANT NOTE: The unit is shipped with the compressor DISABLED in order to prevent the unit from starting when the power is first turned on. Follow the instructions below in the Preparation section to enable the compressor.

The LCD interface will show the outdoor temperature, low (suction) pressure, high (discharge) pressure, superheat, EEV position and water in/out temperatures.

Preparation:

- 1. Turn the power on to the heat pump with the air thermostat OFF. All LED's on the control board should turn on, the LCD interface should say "MGT GEN2 VERx.xx" on line 1 and "Zeroing EEV's" on line 2. You should be able to hear the EEV moving (a clicking sound).
- 2. Measure the following voltages on the compressor contactor and record them on the startup sheet: L1-L2, L2-L3, L1-L3.
- 3. Connect a USB cable between the USB connector on the board and a laptop with the PC App installed (recommended but optional).
- 4. Select the desired Control Source HYD via the PC APP Configuration Page or via the LCD interface Configuration Menu. Set the water setpoints to a low value (e.g. 50°F) to prevent the compressor from coming on on water heating mode.
- 5. Enable the system either with the PC App's Configuration Page System Enable/Disable button or via the LCD interface.

Air Heating Mode:

- 1. Set the thermostat to heating mode and adjust the setpoint to activate stage 1 and stage 2. The fan should slowly ramp up to speed after the time delay of the thermostat expires (if applicable) and the compressor will start.
- Check the PC App or LCD interface. The suction and discharge pressures will vary based on the outdoor temperature and indoor air temperature, but they should be 90-110PSIG and 260-360PSIG respectively for a typical start-up.
- 3. Monitor the unit via the PC APP or LCD while the unit runs, and record the following after 10 minutes of run time:
 - 1. Suction pressure
 - 2. Discharge pressure
 - 3. Duct Return temperature (poke a small hole in the flex collar and insert probe in airstream)
 - 4. Duct Supply temperature (poke a small hole in the flex collar and insert probe in airstream)
 - 5. Duct Delta T (should be between 22-32°F, 12-18°C)
 - 6. Outdoor air temperature
 - 7. Compressor L1(C) current (black wire, place meter between electrical box and compressor)
- 4. Adjust the thermostat setpoint to the desired room temperature and let the unit run through a cycle.
- 5. For units with a desuperheater, turn the power off to the unit. Connect the brown wire with the blue insulated terminal to the compressor contactor as shown in the electrical box diagram. Turn the DHW Switch in the unit post on. Turn the power to the unit on.
- 6. Verify the DHW IN and DHW OUT temperatures (if applicable) by hand (caution: pipes get hot). If the DHW OUT line does not become hotter than the DHW IN line the circulator is air locked. Bleed the air from the system and check the temperature differential again to ensure there is flow from the circulator.
- 7. Remove the electrical cover from the plenum heater. Place a current clamp meter around one of the supply wires. Turn on the power to the plenum heater. Adjust the thermostat setpoint to 85°F (29°C). Verify that the current draw increase as each electric heat stage is activated. (10kW has 2 stages, 15kW has 3 stages and 20kW has 4 stages).

Air Cooling Mode:

- 1. Set the thermostat to cooling mode and adjust the setpoint to activate stage 1 and stage 2.
- 2. Monitoring the unit via the PC APP or LCD Interface while the unit runs, record the following after 10 minutes of run time:
 - 1. Suction pressure
 - 2. Discharge pressure
 - 3. Duct Return temperature
 - 4. Duct Supply Out temperature
 - 5. Duct Delta T
 - 6. Outdoor air temperature
- **3.** Adjust the thermostat setpoint to the desired room temperature if possible, otherwise set it just low enough to allow the unit to run (e.g. 1°F / 0.5°C less than room temperature) and let the unit run through a cycle.

Water Heating Mode:

- 1. Set air thermostat to "off". Adjust the Setpoint Control settings via the the PC App or LCD (or adjust aquastat if used) to activate stage 1 and stage 2. The EEV will begin to open and the compressor will start, as will the circulator pumps.
- 2. Check the PC App or LCD interface. The suction and discharge pressures will vary based on the outdoor temperature and the indoor loop temperature, but they should be 90-110PSIG and 260-360PSIG respectively for a typical start-up.
- 3. Monitor the unit via the PC APP or LCD interface while the unit runs, and record the following after 10 minutes of run time:
 - 1. Suction pressure
 - 2. Discharge pressure
 - 3. Indoor Loop In temperature
 - 4. Indoor Loop Out temperature
 - 5. Indoor Delta T (should be 8-12°F, 4-6°C)
 - 6. Outdoor air temperature
 - 7. Compressor L1(C) current (black wire, place meter between electrical box and compressor)
- 4. Adjust the control setpoints to the desired buffer tank temperature and let the unit run through a cycle.

Final Inspection:

- 1. Turn the power off to the unit (and plenum heater if installed) and remove all test equipment.
- 2. Install the electrical box cover and the access panel on the heat pump. Install the service port caps securely to prevent refrigerant loss. Install the electrical cover on the plenum heater if applicable.
- 3. Do a final check for leaks/spills and ensure the area is clean.
- 4. Turn the power on to the unit and the plenum heater if installed. Set the thermostat and water heat to the final settings.

Startup Record:

1. Sign and date the Startup Record and have the homeowner sign as well. Leave the Startup Record with the homeowner, retain a copy for filing and send a copy to Maritime Geothermal Ltd. for warranty registration.

		Startup Reco	ord Sheet - ATF-Seri	es Two-Sta	ge R410a					
Installation Site			Startup Date	Installer						
City				Company						
Province			Check boxes unless	Model						
Country			asked to record data. Circle data units.	Serial #						
Homeowner Nam	3		Customer Phone #							
		D	RE-START INSPI							
Outdoor Unit	Unit i	s securely mounted at lea		_						
		outlet is clear of obstruction	•	luoling out						
Line Set		set length, extra charge a			ft.	m		lb	kg	
		em is pressure tested, va	· · · /						Ng	
		ter-connect piping is insu		orted						
	-	g is neat and securely fa	,							
		ce valves are open and c		wrench						
Ductwork	_	work completed, dampers								
Duotmont		ter and end cap are insta								
		lensate drain is connecte								
		um heater is securely fas								
Indoor Loop		nut-off valves are open, lo	air							
(Hydronic)		static pressure			psig	kPa				
Domestic Hot	All sh	nut-off valves are open, li								
Water Desuperheater pump wire is disconnected										
Electrical	High/	low voltage connections	are correct and securely	fastened						
	Circu	Circuit breaker size and wire gauge for heat pump					Ga.			
	Circu	it breaker size, wire gaug	ge, and size for Plenum	leater	A		Ga.		kW]
			STARTUP DA	ТА						
Preparation	Volta	ge across L1 and L2, L1	and L3, L2 and L3							VAC
Air Heating Mode (10 minutes)	Sucti	on Pressure / Discharge	Pressure					psig	kPa	
(To minutes)	Duct	Return, Duct Supply, and	d Delta T		In		Out		°F	°C
	Outdo	oor Air Temperature			°F	°C				
	Com	pressor L1 (black wire) cu	urrent		Α					
	Dome	estic Hot Water functioni	ng							
Air Cooling Mode	Sucti	on Pressure / Discharge	Pressure					psig	kPa	
(10 minutes)		Return, Duct Supply, and			In		Out		°F	°C
		oor Air Temperature			°F	°C				
Water Heating		on Pressure / Discharge	Pressure					psig	kPa	
Mode (10 minutes)		or In (Hot In), Indoor Out			In		Out		°F	°C
- /		oor Air Temperature	, ,, <u> </u>		°F	°C				
		pressor L1 (black wire) cu	urrent		A					
ı		•		-						
Date:		Startup Personnel Signature:		Witness/S	ite Signatur	e:				

A total of three copies are required, one for the site, one for the installer/startup and one to be sent to Maritime Geothermal Ltd.

MAINTENANC	E SCHEDULE		
It	tem	Interval	Procedure
Outdoor Unit		Weekly	Inspect for and clear away debris or leaves in air coil intake, and ice buildup under unit that is approaching air coil.
Indoor Air Filter		6 months	Inspect for dirt. Replace if necessary.
Compressor Contactor		1 year	Inspect for pitted or burned points. Replace if necessary.
Condensate Drain		1 year	Inspect for clogs. Clean if necessary.
LCD Interface or PC App		When heat pump problem is suspected	Check for alarms and faults (only necessary if alarms not reported through a BACnet system). Rectify problem if alarms found. See Troubleshooting chapter.
Coaxial Heat Exchanger		When experiencing performance degrada- tion that is not ex- plained by a refrigera- tion circuit problem or low loop flow rate	Disconnect the indoor loop and flush heat exchanger with a calcium removing solution. Generally not re- quired for closed loop or cold water open loop sys- tems or closed indoor loops; whenever system perfor- mance is reduced for hot water open indoor loop sys- tems (unusual).

Troubleshooting Guide

WARNING: WHEN SERVICING THE OUTDOOR UNIT, BE SURE TO TURN OFF POWER TO THE INDOOR UNIT. The outdoor disconnect switch will not cut low voltage power, and damage to the control board will occur if the main heat pump breaker is not turned off during service.

The following steps are for troubleshooting the heat pump. If the problem is with the domestic hot water or the plenum heater, proceed to those sections at the end of the troubleshooting guide. Repair procedures and reference refrigeration circuit diagrams can be found later in this manual.

- **STEP 1:** Verify that the LCD Interface is functioning. If it is not, proceed to POWER SUPPLY TROUBLE SHOOTING, otherwise proceed to STEP 2.
- STEP 2: Record the alarm shown on the LCD Interface or use the PC APP Alarms page to determine the alarm type. Proceed to the ALARMS TROUBLESHOOTING section.
- STEP 3: If there are no alarms and STAGE1 is showing ON (LCD Interface, PC APP or LED on control board) but the compressor is not operating, does not attempt to start, attempts to start but cannot, starts hard, or starts but does not sound normal, proceed to the COMPRESSOR TROUBLESHOOTING section.
- **STEP 4:** If the compressor starts and sounds normal, the compressor is most likely OK. Proceed to the OPERATION TROUBLE-SHOOTING section.
- **NOTE:** To speed up the troubleshooting process, if using the PC Application, click on SC Override to reduce the short cycle timer to 10 seconds.

POWER SUPP	POWER SUPPLY TROUBLESHOOTING							
Fault	Possible Cause	Verification	Recommended Action					
No power to the heat pump	Disconnect switch open (if installed).	Verify disconnect switch is in the ON position.	Determine why the disconnect switch was opened; if all is OK close the switch.					
	Fuse blown / breaker tripped.	At heat pump disconnect box, voltmeter shows 230VAC on the line side but not on the load side.	Reset breaker or replace fuse with proper size and type. (Time- delay type "D")					
No heartbeat on control board	Transformer breaker tripped (or fuse blown for those without breaker).	Breaker on transformer is sticking out (or fuse looks burnt).	Push breaker back in. If it trips again locate cause of short circuit and correct (or replace fuse) .					
	Faulty transformer.	Transformer breaker is not tripped (or fuse not blown), 230VAC is present across L1 and L3 of the compressor contactor but 24VAC is not present across 24VAC and COM of the control board.	Replace transformer.					
	Faulty Control Board.	24VAC is present across 24VAC and COM of the control board.	Replace the control board.					
No display on air thermostat	No power from transform- er.	See No Heartbeat on control board.						
	Faulty wiring between heat pump and thermo- stat.	24VAC is not present across R and C of the thermostat.	Correct the wiring.					
	Faulty thermostat.	24VAC is present across R and C of the thermostat but thermostat has no display.	Replace thermostat .					

ALARM TROUBLE	ESHOOTING	
Alarm/Fault	Description	Recommended Action
	on of the GEN2 Control Board is a very useful tool for troubleshoot up to and including the time at which the alarm(s) occurred. Note t	
Low Pressure	A low pressure alarm occurs when the suction pressure drops to or below the <i>Low Pressure Cutout</i> value. The low pressure is checked just before a compressor start; if it is OK the compres- sor will start, otherwise an alarm will occur. When the compres- sor starts, the low pressure alarm will be ignored for the number of seconds that <i>Low Pressure Ignore</i> is set to, after which the low pressure alarm will be re-enabled. This allows a dip in suc- tion pressure below the cutout point during startup without caus- ing a nuisance alarm.	
High Pressure	A high pressure alarm occurs when the discharge pressure rises to or above the <i>High Pressure Cutout</i> value.	Go to the High Pressure sec- tion of the mode the unit was operating in at the time of the alarm.
Compressor Status (accessory)	This alarm occurs when there is a current draw on the compres- sor but no call for the compressor to be on (welded contactor) or when there is a call for the compressor to be on but there is no compressor current draw (manual high pressure control is open or contactor failure). Requires current sensor accessory.	Check contactor if compres- sor is staying on when it should be off. Go to Com- pressor section if compressor is not on when it should be. Also check for tripped manual high pressure control.
Comp. Not Pumping	Discharge pressure is less than 30 psi higher than suction pres- sure after 2 minutes run time. It indicates leaking reversing valve, compressor very hot and tripped on internal overload, manual high pressure control trip, bad contactor, or defective compressor.	Check for reversing valve not seated properly, tripped man- ual high pressure control, or a contactor or compressor problem.
Low Charge / EEV	EEV position has been above 99% for 20 minutes within the first hour of cycle.	Check system for refrigerant leak. Also check that EEV for proper operation (see EEV Troubleshooting section)
LOC (Loss of Charge)	This alarm occurs if the low pressure and/or high pressure sensors are below 30 psig (207 kPa).	Check system for refrigerant leak. Check for incorrect pressure sensor reading.
Condensate Drain	Water level in the condensate tray has risen to sensor level (if present), indicating condensate drain is blocked.	Check condensate drain.
Multiple Defrosts	This alarm occurs if a second defrost occurs immediately after the defrost disabled timer expires from a previous defrost cycle.	Go to Low suction pressure or Outdoor temperature reading incorrect in the Op- eration Troubleshooting - Heating Mode section.

FAULT TROUBLI	FAULT TROUBLESHOOTING					
Alarm/Fault	Description	Recommended Action				
Digital Inputs						
Digital Outputs						
Analog Inputs	A failure has occurred and the indicated section of the	Cycle the power a few times; if the				
MODBUS Comms	control board may no longer work properly.	fault persists replace the control board.				
PWM Outputs						
Real Time Clock						
Flash Memory	A failure has occurred and stored data may be corrupt.	It may be possible to correct this by using the menu item Tools—Reset to Factory Defaults . If this clears the fault then the system configuration will have to be set up again.				
Menu Buttons	A failure has occurred and the control board may no longer respond to menu button key presses.	Try turning off the power, disconnect- ing and reconnecting the cable be- tween the LCD Interface board and the Control Board, and then turning				
LCD Interface	A failure has occurred and display may show erratic da- ta, no data or may not turn on at all.	the power back on again. If this does not work then either the LDC Display board, the cable, or the driver section of the Control Board may be faulty.				
BACnet Comms	BACnet communications experienced a timeout.	See below.				
Pressure Sensors	The sensor is reading outside of the acceptable range. Check to ensure connector is on securely.	Replace the pressure sensor. If this does not rectify the problem, replace the control board.				
Temperature Sensors	The sensor is reading outside of the acceptable range. Check to ensure connector is on securely.	Replace the temperature sensor. If this does not rectify the problem, replace the control board.				

BACnet TROUE	BACnet TROUBLESHOOTING						
Fault	Possible Cause	Verification	Recommended Action				
BACnet communications not working	Selected baud rate does not match building control system.	Check baud rate of system.	Adjust BACnet parameters in the PC App's Tools>Configuration				
properly Or BACnet FAULT	Selected MAC address and/or Instance # conflict with other devices on the network.	Check MAC address and Instance # in relation to other system devices.	window. Cycle power to invoke any changes.				
indication	BACnet wiring or termina- tion problem.	Verify correct twisted pair wire and termination in the BACnet Interface chapter (earlier).	Correct wiring.				
	Hardware problem on heat pump control board.	Remove BACnet connector from board as well as jumper from TERM (located just above the BACnet con- nector). Using a multimeter set to DC volts with negative probe on B and positive probe on A , confirm there is +2.5VDC .	Replace board if voltage not cor- rect.				

COMPRESSOR		ì			
Fault	Possible Cause	Verification	Recommended Action		
Compressor will not start	Faulty control board.	No 24vac output on STAGE1 when compressor should be operating.	Replace control board.		
	Faulty run capacitor. (Single phase only)	Check value with capacitance meter. Should match label on capacitor. Compressor will hum while trying to start and then trip its overload.	Replace if faulty.		
	Loose or faulty wiring.	Check all compressor wiring, includ- ing inside compressor electrical box.	Fix any loose connections. Re- place any damaged wires.		
	Faulty compressor contactor.	Voltage on line side with contactor held closed, but no voltage on one or both terminals on the load side. Points pitted or burned. Or, 24VAC across coil but contactor will not engage.	Replace contactor.		
	Thermal overload on compressor tripped.	Ohmmeter shows reading when placed across R and S terminals and infinity between C & R or C & S. A valid resistance reading is present again after the compressor has cooled down.	Proceed to Operation Trouble- shooting (particularly <i>high suction</i> <i>pressure</i> and <i>high discharge pres-</i> <i>sure</i>) to determine the cause of the thermal overload trip.		
	Burned out motor (open winding)	Remove wires from compressor. Ohmmeter shows infinite resistance between any two terminals. Note: Be sure compressor overload has had a chance to reset. If compressor is hot this may take several hours.	Replace the compressor.		
	Burned out motor (shorted windings)	Remove wires from compressor. Resistance between any two termi- nals is below the specified value.	Replace the compressor.		
	Motor shorted to ground.	Remove wires from compressor. Check for infinite resistance be- tween each terminal and ground.	If any terminal to ground is not infinite replace the compressor.		
	Seized compressor due to locked or damaged mechanism.	Compressor attempts to start but trips its internal overload after a few seconds. (Run capacitor already verified)	Attempt to "rock" compressor free. If normal operation cannot be established, replace compressor.		
Compressor starts hard	Start capacitor faulty. (Single phase only)	Check with capacitance meter. Check for black residue around blowout hole on top of capacitor.	Replace if faulty. Remove black residue in electrical box if any.		
	Potential relay faulty. (Single phase only)	Replace with new one and verify compressor starts properly.	Replace if faulty.		
	Compressor is "tight" due to damaged mechanism	Compressor attempts to start but trips its internal overload after a few seconds. Run capacitor has been verified already.	Attempt to "rock" compressor free. If normal operation cannot be es- tablished, replace compressor.		
Compressor stage 2 will not activate	Faulty stage 2 plug (solenoid coil is in plug).	Verify if 24VAC is present across Y2 and C of the terminal strip.	Replace module if signal is pre- sent. Check wiring if signal is not present.		

OPERATION TH	ROUBLESHOOTING -	WATER HEATING MODE	
Fault	Possible Cause	Verification	Recommended Action
Outdoor temper- ature reading is incorrect by a large amount	Outdoor EEV is mechani- cally faulty and causing electromagnetic interfer- ence	Verify EEV operation (EEV2) - see EEV Troubleshooting section	Replace outdoor EEV if faulty.
	Faulty outdoor tempera- ture sensor	Outdoor EEV verified to be good, no loose connections in indoor to out- door control wiring	Replace outdoor temperature sensor.
High or low suc- tion or discharge pressure	Faulty sensor	Compare pressure sensor reading against a known reference such as a new refrigeration manifold set.	Check wiring, replace sensor. If problem persists, replace control board.
High discharge pressure	Low indoor loop flow rate	Verify that indoor delta T is 8-12°F (4-7°C)	Increase flow rate if new installa- tion, check for fouled heat ex- changer if existing installation.
	Temperature setpoint(s) too high (if using external Signals or BACnet control)	Use PC APP to verify that Indoor OUT does not exceed 120°F (49°C)	Reduce setpoint(s).
	Outdoor unit's EEV stuck almost closed or partially blocked by foreign object.	Manually adjusting the outdoor EEV does not affect the superheat or the suction pressure. High superheat, low suction pressure.	Go to EEV troubleshooting sec- tion.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same temperature. If there is a temperature difference then it is plugged. Also causes low suc- tion pressure.	Replace filter-dryer.
	Unit is overcharged	High subcooling, low air delta T.	Remove 1/2 lb of refrigerant at a time and verify that the discharge pressure reduces.
	Refrigerant contaminated with air or nitrogen	Possibility of procedural error during line set vacuuming and charging.	Replace refrigerant.
Low suction pressure	Indoor OUT temperature too cold (on startup or if unit has been off for ex- tended period)	Ensure Indoor OUT temperature is above the low limit indicated in the Model Specific Information chapter.	Reduce flow temporarily until In- door OUT temperature has risen sufficiently.
	Low or no outdoor unit airflow	Visually check outdoor fan to see if it is operating.	Go to Outdoor Fan Troubleshoot- ing section.
	TS1 temperature sensor not reading properly	If the sensor is reading low it will cause the superheat to appear high, which causes the EEV to continually close.	Verify EEV position is low com- pared to normal. Check tempera- ture sensor, replace if necessary.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same temperature. If there is a temperature difference then it is plugged. Also causes high dis- charge pressure.	Replace filter-dryer.
	Outdoor unit's EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the outdoor EEV does not affect the superheat or the suction pressure. High superheat and high discharge pressure.	Go to EEV troubleshooting sec- tion.
	Low refrigerant charge	Superheat is high, outdoor EEV posi- tion is high.	Locate the leak and repair it. Spray Nine, a sniffer, and/or dye are common methods.

OPERATION TROUBLESHOOTING - WATER HEATING MODE			
Fault	Possible Cause	Verification	Recommended Action
High suction pressure (may appear to not be pumping)	Outdoor unit's EEV stuck open	Manually adjusting the outdoor EEV does not affect the superheat or the suction pressure. Low superheat and low discharge pressure.	Go to EEV troubleshooting sec- tion.
	Leaking reversing valve (can cause compressor to overheat and trip internal overload)	Reversing valve is the same temper- ature on both ends of body, com- mon suction line is warm, compres- sor is running hot, low compressor discharge pressure.	Replace reversing valve.
	Faulty compressor, not pumping	Pressures change only slightly from static values when compressor is started.	Replace compressor.
Compressor frosting up	See Low Suction Pressure in this section		
Outdoor unit EEV frosting up	Outdoor unit's EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the outdoor EEV does not affect the superheat or the suction pressure. High superheat, low suction pressure.	Go to EEV troubleshooting sec- tion.
Random high pressure trip (may not occur while on site)	Faulty indoor circulator relay	Using the PC APP, manually turn the ICR on/off several times and ensure the circulator(s) start and stop.	Replace relay.
Random manual high pressure trip (may not oc- cur while on site)	Faulty compressor contac- tor	Points pitted or burned. Contactor sometimes sticks causing the compressor to run when it should be off.	Replace contactor.

OPERATION TR	ROUBLESHOOTING -	AIR HEATING MODE	
Fault	Possible Cause	Verification	Recommended Action
Outdoor temper- ature reading is incorrect by a large amount	Outdoor EEV is mechani- cally faulty and causing electromagnetic interfer- ence	Verify EEV operation (EEV2) - see EEV Troubleshooting section	Replace outdoor EEV if faulty.
	Faulty outdoor tempera- ture sensor	Outdoor EEV verified to be good, no loose connections in indoor to out- door control wiring	Replace outdoor temperature sensor.
High or low suc- tion or discharge pressure	Faulty sensor	Compare pressure sensor reading against a known reference such as a new refrigeration manifold set.	Check wiring, replace sensor. If problem persists, replace control board.
High discharge pressure	Low indoor unit airflow	See Indoor Fan Troubleshooting sec- tion	Correct the problem.
	Outdoor unit's EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the outdoor EEV does not affect the superheat or the suction pressure. High superheat, low suction pressure.	Go to EEV troubleshooting sec- tion.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same temperature. If there is a temperature difference then it is plugged. Also causes low suc- tion pressure.	Replace filter-dryer.
	Unit is overcharged	High subcooling, low air delta T.	Remove 1/2 lb of refrigerant at a time and verify that the discharge pressure reduces.
	Refrigerant contaminated with air or nitrogen	Possibility of procedural error during line set vacuuming and charging.	Replace refrigerant.
Low suction pressure	Entering indoor air tem- perature too cold (e.g. on startup, or if unit has been off for extended period)	Ensure entering air temperature is above the low limit indicated in the Model Specific Information section.	Reduce airflow temporarily until Indoor Out temperature has risen sufficiently. This can be done by partially blocking off the return duct.
	Low or no outdoor unit airflow	Visually check outdoor fan to see if it is operating.	Go to Outdoor Fan Troubleshoot- ing section.
	TS1 temperature sensor not reading properly.	If the sensor is reading low it will cause the superheat to appear high, which causes the EEV to continually close.	Verify EEV position is low com- pared to normal. Check tempera- ture sensor, replace if necessary.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same temperature. If there is a temperature difference then it is plugged. Also causes high dis- charge pressure.	Replace filter-dryer.
	Outdoor unit's EEV stuck almost closed or partially blocked by foreign object.	Manually adjusting the outdoor EEV does not affect the superheat or the suction pressure. High superheat and high discharge pressure.	Go to EEV troubleshooting sec- tion.
	Low refrigerant charge.	Superheat is high, outdoor EEV posi- tion is high.	Locate the leak and repair it. Spray Nine, a sniffer, and/or dye are common methods of locating a leak.

OPERATION TROUBLESHOOTING - AIR HEATING MODE			
Fault	Possible Cause	Verification	Recommended Action
High suction pressure (may appear to not be pumping)	Outdoor unit's EEV stuck open	Manually adjusting the outdoor EEV does not affect the superheat or the suction pressure. Low superheat and low discharge pressure.	Go to EEV troubleshooting sec- tion.
	Leaking reversing valve (can cause compressor to overheat and trip internal overload)	Reversing valve is the same temper- ature on both ends of body, com- mon suction line is warm, compres- sor is running hot, low compressor discharge pressure.	Replace reversing valve.
	Faulty compressor, not pumping	Pressures change only slightly from static values when compressor is started.	Replace compressor.
Compressor frosting up	See Low Suction Pressure in this section		
Outdoor unit EEV frosting up	Outdoor unit's EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the outdoor EEV does not affect the superheat or the suction pressure. High superheat, low suction pressure.	Go to EEV troubleshooting sec- tion.
Random high pressure trip (may not occur while on site)	Faulty indoor fan	Go to Indoor Fan troubleshooting section.	Go to Indoor Fan troubleshooting section.
Random manual high pressure trip (may not oc- cur while on site)	Faulty compressor contac- tor	Points pitted or burned. Contactor sometimes sticks causing the compressor to run when it should be off.	Replace contactor.

OPERATION TROUBLESHOOTING - DEFROST & AIR COOLING MODES			
Fault	Possible Cause	Verification	Recommended Action
Heating instead of cooling	Thermostat or zone con- troller not set up properly.	Verify that there is 24VAC across O and C of the terminal strip when calling for cooling.	Correct setup.
	Faulty reversing valve so- lenoid coil.	Verify solenoid by removing it from the shaft while the unit is running. There should be a loud "whoosh" sound when it is removed.	Replace solenoid if faulty.
	Faulty reversing valve.	A click can be heard when the coil is energized but the unit continues to heat instead of cool.	Replace reversing valve.
High discharge pressure	Low or no outdoor unit airflow	Visually check fan to see if it is op- erating.	Go to Outdoor Fan Troubleshoot- ing section.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same tempera- ture. If there is a temperature dif- ference then it is plugged. Also causes low suction pressure.	Replace filter-dryer.
	Unit is overcharged	High subcooling, low air delta T.	Remove 1/2 lb of refrigerant at a time and verify that the discharge pressure reduces.
	Refrigerant contaminated with air or nitrogen	Possibility of procedural error dur- ing line set vacuuming and charg- ing.	Replace refrigerant.

OPERATION TROUBLESHOOTING - DEFROST & COOLING MODES			
Fault	Possible Cause	Verification	Recommended Action
High suction pressure (may appear to not be pumping)	Indoor unit's EEV stuck open	Manually adjusting the indoor EEV does not affect the superheat or the suction pressure. Low superheat and low discharge pressure.	Go to EEV troubleshooting section.
	Leaking reversing valve (can cause compressor to overheat and trip internal overload)	Reversing valve is the same tem- perature on both ends of body, common suction line is warm, com- pressor is running hot, low com- pressor discharge pressure.	Replace reversing valve.
	Faulty compressor, not pumping	Pressures change only slightly from static values when compressor is started.	Replace compressor.
Low suction pressure	Low indoor unit airflow	See Indoor Fan Troubleshooting section. Note: low airflow will cause the air coil to ice up once the suction drops below 90PSIG .	Correct the problem.
	Indoor unit's EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the indoor EEV does not affect the superheat or the suction pressure. High superheat and high discharge pressure.	Go to EEV troubleshooting section.
	TS1 temperature sensor not reading properly	If the sensor is reading low it will cause the superheat to appear high, which causes the EEV to con- tinually close.	Verify EEV position is low com- pared to normal. Check tempera- ture sensor, replace if necessary.
	Filter-dryer plugged	Feel each end of the filter-dryer; they should be the same tempera- ture. If there is a temperature dif- ference then it is plugged. Also causes high discharge pressure.	Replace filter-dryer.
	Low refrigerant charge	Indoor airflow is good but suction is still low. Check static refrigeration pressure of unit for a low value.	Locate the leak and repair it. Spray Nine, a sniffer, and dye are common methods of locating a leak.
Compressor frosting up	See Low Suction Pressure in this section		
Indoor unit's EEV frosting up	Indoor unit's EEV stuck almost closed or partially blocked by foreign object	Manually adjusting the indoor EEV does not affect the superheat or the suction pressure. High superheat and high discharge pressure.	Go to EEV troubleshooting section.
Random manual high pressure trip (may not oc- cur while on site)	Faulty compressor contac- tor	Points pitted or burned. Contactor sometimes sticks causing the com- pressor to run when it should be off.	Replace contactor.
Outdoor temper- ature reading is incorrect by a large amount	Outdoor EEV is mechani- cally faulty and causing electromagnetic interfer- ence	Verify outdoor EEV operation (EEV2) - see EEV Troubleshoot- ing section	Replace outdoor EEV if faulty.
	Faulty outdoor tempera- ture sensor	Outdoor EEV verified to be good, no loose connections in indoor to outdoor control wiring	Replace outdoor temperature sen- sor.

INDOOR FAN/BLOWER TROUBLESHOOTING			
Fault	Possible Cause	Verification	Recommended Action
Low indoor unit airflow	Dirty air filter	Inspect.	Replace.
	Dirty air coil	Inspect.	Clean.
	Poor ductwork	Measure delta T between supply and return ducts at the unit. In heating mode, it should not be above 30°F(17°C).	The ECM fan will provide proper airflow up to an external static backpressure of 0.5 inH_2O . The ductwork is poorly designed or greatly undersized if the fan mo- tor cannot provide the required airflow.
	Airflow selected is too low	Check airflow settings on Indoor Fan page of the PC APP.	Select a higher setting.
	Airflow reduction is ena- bled	AR1 and AR2 are connected with a dry contact or jumper.	Airflow reduction may not be fea- sible with lower airflow selections. Increase settings until unit oper- ates properly.
Indoor fan not operating at correct speeds	Wrong model size selected	Verify that the model size is correct on the Configuration Page of the PC APP.	Select the correct model size.
Indoor fan not operating or op- erating intermit- tently	Fan control signal harness and/or fan power harness is loose	Verify that the connector is properly inserted into the fan motor. Gently tug on each wire to verify it is properly inserted into the connector.	Repair any loose connections.
	Control board not config- ured properly	Verify that the model series is cor- rect on the Configuration Page of the PC APP.	Correct the configuration. If the wrong series is selected there may be not be any fan output.
	Faulty control board out- puts Note: cycle the power once to see if the fan begins operating properly first	 Create a call for the fan from the thermostat or use a jumper R-G (24VAC on G terminal in heat pump). On the ECM Fan connector on the left side of the control board: 1) verify that there is 12 to 20VDC between pin G (grey wire) and pin C (white wire). 2) Verify that there is 2 to 6VDC between pin P (dark green wire) and pin C (white wire) 	If there is no voltage present on either of the pins (G and P) re- place the control board. Ensure control board model se- ries is correct, see above.
	Faulty control signal har- ness or faulty motor head	 Create a call for the fan from the thermostat or use a jumper R-G (24VAC on G terminal in heat pump). On the ECM Fan connector at the fan motor: 1) verify that there is 12 to 20VDC between pin G (grey wire) and pin C (white wire). 2) Verify that there is 2 to 6VDC between pin P (dark green wire) and pin C (white wire) 	If proper signal isn't present, re- place the fan control signal har- ness. If proper signal is present, replace fan motor.
	Faulty fan power harness or faulty motor	Insert the tips of the voltmeter probes into the back of the connect- or at the fan to measure the voltage across the red and black wires. Value should be ~230VAC.	Replace power harness if 230VAC is not present, replace motor if 230VAC is present.

OUTDOOR FA	OUTDOOR FAN TROUBLESHOOTING			
Fault	Possible Cause	Verification	Recommended Action	
Outdoor fan not operating or operating intermittently	Fan power connections	Check for 230VAC across L1 and L2 of the outdoor unit. Proceed to next step if voltage present.	If no voltage present, repair any loose connections.	
	Faulty PWM output on GEN2 control board	Use manual mode of the PC APP to set the outdoor fan to 50%. Using a multimeter set to VDC, measure PWM1 to GND on the GEN2 control board in the indoor unit. It should be ~5VDC. Proceed to next step if volt- age present.	If signal is not present the control board may be faulty. Try cycling the power and re-testing. If this does not correct the problem re- place the control board.	
	Fan PWM signal connec- tions	Use manual mode of PC APP to set the outdoor fan to 50%. Using a multi-meter set to VDC, measure PWM+ to GND in the outdoor unit. It should be ~5VDC. Proceed to next step if voltage present.	If signal is not present, check connections of PWM wire and ground wire. Replace wiring if connections are good.	
	Faulty fan motor	All of the above checks have been performed and everything is OK.	Replace fan motor.	

DOMESTIC HOT WATER (DESUPERHEATER) TROUBLE SHOOTING			
Fault	Possible Cause	Verification	Recommended Action
Insufficient hot water (tank problem)	Thermostat on final hot water tank set too low. Should be set 120-140°F.	Visually inspect the setting.	Adjust the setting.
	Breaker tripped, or fuse blown in electrical supply to hot water tank	Check both line and load sides of fuses. If switch is open determine why (possible shorted element).	Correct problem, and replace blown fuse or reset breaker.
	Reset button tripped on hot water tank	Check voltage at elements with multimeter.	Push reset button.
Insufficient hot water preheat	DHW switch is turned off	Inspect switch, located on heat pump cabinet post.	Turn switch on.
(heat pump problem)	Brown wire with blue insu- lated terminal at compres- sor contactor not connect- ed during installation	Inspect wire with insulated terminal as shown on electrical diagrams.	Connect wire as instructed on electrical box diagram and/or wir- ing schematic diagram.
	Circulator pump seized or motor failed	Use an amprobe to measure current draw.	Replace if faulty.
	Blockage or restriction in the water line or hot water heat exchanger	Check water flow and power to pump. Check water lines for obstructions.	Remove obstruction in water lines. Acid treat the domestic hot water coil.
	Faulty DHW cutout (failed open)	Check contact operation. Should close at 120°F and open at 140°F.	Replace DHW cutout if faulty.
	Heat pump not running enough hours to make sufficient hot water	Note the amount of time the heat pump runs in any given hour.	Temporarily turn up the tank thermostats until colder weather creates longer run cycles.
Water is too hot.	Faulty DHW cutout (failed closed)	Check contact operation. Should close at 120°F.	Replace DHW cutout if faulty.
	Thermostat on hot water tank set too high. Should be set at 120°F to 140°F	Visually inspect the setting.	Adjust the setting.

PLENUM HEAT	ER TROUBLE SHOOT	ING	
Fault	Possible Cause	Verification	Recommended Action
No 230VAC across plenum heater L1 and L2	Disconnect switch open. (if installed)	Verify disconnect switch is in the ON position.	Determine why the disconnect switch was opened, if all is OK close the switch.
	Fuse blown / breaker tripped	At plenum heater disconnect box (if installed), voltmeter shows voltage on the line side but not on the load side. Check if breaker is tripped.	Reset breaker or replace fuse at plenum heater disconnect box. Replace fuse with proper size and type. (Time-delay type "D")
	Same "Line" to L1 and L2	Measuring L1 to ground and L2 to ground both yield 115VAC, but L1 to L2 yields 0VAC.	Correct wiring.
No W2 signal at heat pump termi- nal strip	No call for auxiliary or emergency heat from ther- mostat	Verify that the thermostat is indicating that auxiliary or emergency heat should be on.	Set thermostat to engage auxilia- ry or emergency heat. (Note that some thermostats require a jump- er between auxiliary and emer- gency. Check the tstat manual.)
	Faulty thermostat	Thermostat doesn't indicate a call for auxiliary or emergency when it should. Or indicates auxiliary or emergency but no 24VAC signal pre- sent across C and the auxiliary and/ or emergency pin at the thermostat.	Replace thermostat.
	Faulty thermostat wiring	24VAC signal is present across C and the auxiliary and/or emergency pin at the thermostat but no 24VAC signal is present across W2 and C at the heat pump terminal strip.	Correct wiring.
No 24VAC signal from C to ground at the plenum	Plenum heater transform- er is burned out	Voltmeter does not show 24VAC across transformer secondary.	Replace transformer.
heater control board	Plenum heater control board is faulty	Transformer tested OK in previous step.	Replace control board.
No 24VAC signal from 1 to ground at the plenum heater control	Faulty wiring	24VAC present across C and ground at the plenum heater, but not across ground of the plenum heater and C_P of the heat pump terminal strip	Correct the wire which should run from heat pump C_P to plenum heater C.
board (when a plenum heater demand is pre- sent)		If above tested OK, 24VAC is present across ground of plenum heater and 1 of the heat pump terminal strip, but not across ground of plenum heater and 1 of the plenum heater.	Correct the wire which should run from heat pump terminal "1" to plenum heater terminal "1".
Plenum heater thermal overload	Indoor fan not operating	See Indoor Fan/Blower Troubleshoot- ing section.	Correct problem. Reset thermal overload.
is tripped.	Plenum heater is not posi- tioned so that majority of airflow passes over ele- ments (if installed in duct- work outside heat pump)	Plenum heater meant for internal heat pump installation is installed in a larger duct outside heat pump, or is positioned after duct elbow.	Reposition plenum heater, or ob- tain a plenum heater model with a wider element cage (contact Maritime Geothermal).
	Faulty overload	Reset thermal overload.	Replace if faulty.

EEV (Electronic Expansion Valve) TROUBLESHOOTING

Electronic expansion valves are a great advancement over TVX's, allowing more precise refrigerant control, but they do have a couple of limitations.

- a) EEV's receive commands to open or close from the control board, but they don't send any feedback to the control board to confirm that command has been received and acted upon. If they aren't reliably acted upon (due to pulses missed due to a wiring issue or EEV being mechanically stuck), the actual valve opening position won't match what the control board thinks it is. In extreme cases, the resulting repeated commands can cause the *apparent* valve position to go to **15%** (minimum) or **100%**, when the valve is actually in between.
- b) A restriction in the refrigeration circuit (particularly the liquid line, e.g. plugged filter-dryer) or shortage of refrigerant due to a leak can cause a similar issue. If the EEV opens to allow more refrigerant flow to lower the superheat but liquid refrigerant is not available at its inlet, the EEV will continue to open to attempt to let more refrigerant through and will work its way towards 100% (full open). High superheat is also a symptom.

If there is low suction pressure and the EEV position is also low then the problem is generally not in the refrigeration system; check the water or airflow of the indoor or outdoor loop, whichever is currently the cold side (evaporator).

Tests to determine if an EEV is working

- Sound test: turn the power to the heat pump off and back on again. Or manually set the EEV to 25% and wait for it to stop, then set the EEV to "-1%". Both actions will cause the EEV to overdrive closed. You should hear the valve clicking and then the clicking should change and get louder when the valve reaches 0%. If there is no sound, then it is likely that the EEV is faulty or stuck.
- Using the PC APP, put the system in manual override mode. Manually adjust the EEV position by at least 25% either up or down and check to see that the suction pressure, discharge pressure and superheat react to the change. If there is no reaction, then it is likely that the EEV is faulty or stuck.
- Set the EEV back to AUTO and then turn the heating or cooling demand off (but leave power on). Once the demand
 is off, if the EEV is working then the discharge pressure should remain significantly higher than the suction pressure,
 i.e. the system will not equalize (since EEV's are closed when there is no demand). If the system does equalize it is
 likely that the EEV is not working and is partially open.

There are 3 possible causes for EEV problems: the control board is not working properly, the wire/cable is faulty, or the EEV is faulty.

The EEV can be checked electrically:

- RED to GREEN 75ohms
- WHITE to BLACK 75ohms

If this test fails, EEV is bad and should be replaced, but if it passes it still may be mechanically defective.

Check with a new EEV:

A further check that can be performed is to connect a new EEV and cable to the control board and visually check the EEV so see if it opens and closes by setting the position to 0 and 100% If the new EEV works then the EEV in the unit or the cable needs to be replaced.

- 1) Connect a test EEV and test cable to the control board.
- 2) Set the EEV position to 0%.
- 3) Set the EEV position to 100% and then listen for clicking and watch to see if the pintle in the EEV moves open.
- 4) Set the EEV position to 0% and then listen for clicking and watch to see if the pintle in the EEV moves closed.
- 5) If the EEV does not move in one or both directions then the control board must be replaced.
- 6) If the test EEV moves in both directions then then either the cable or the EEV in the unit is faulty.
- 7) Disconnect the test EEV from the test cable and connect it to the cable in the unit.
- 8) Repeat steps 2 to 4.
- 9) If the test EEV moves in both directions then the EEV in the unit is faulty and must be replaced.

10) If the test EEV does not move in one or both directions then the cable must be replaced.

Repair Procedures

WARNING: WHEN SERVICING THE OUTDOOR UNIT, BE SURE TO TURN OFF POWER TO THE INDOOR UNIT. The outdoor disconnect switch will not cut low voltage power, and damage to the control board will occur if the main heat pump breaker is not turned off during service.

Pumpdown Procedure

- 1. Place the unit in SERVICE mode via the PC App or LCD interface; this will open the EEVs and start the indoor circulator (as long that circulator is powered and controlled by the heat pump). **DO NOT** turn off electrical power at the breaker panel, since the coaxial coil **must have full water flow** during refrigerant recovery.
- Connect the refrigerant recovery unit to the heat pump's internal service ports via a refrigeration charging manifold and to a recovery tank as per the instructions in the recovery unit manual. Plan to dispose of refrigerant if there was a compressor burnout.
- 3. All refrigerant to water heat exchangers (coaxial coils, brazed plates) **must either have full flow or be completely drained** of fluid before recovery begins. Failure to do so can freeze and rupture the heat exchanger, voiding its warranty. (Note that this does not apply to desuperheater coils.)
- 4. Ensure all hose connections are properly purged of air. Start the refrigerant recovery as per the instructions in the recovery unit manual.
- 5. Allow the recovery unit suction pressure to reach a vacuum. Once achieved, close the charging manifold valves. Shut down, purge and disconnect the recovery unit as per the instructions in its manual. Ensure the recovery tank valve is closed before disconnecting the hose to it.
- Connect a nitrogen tank to the charging manifold and add nitrogen to the heat pump until a positive gauge pressure of 5-10 psig is reached. This prevents air from being sucked into the unit by the vacuum when the hoses are disconnected.

Turn off power to heat pump. The heat pump is now ready for repairs.

General Repair Procedure

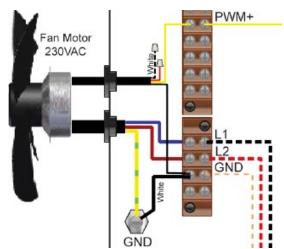
- 1. Perform repairs to system.
 - Always ensure nitrogen is flowing through the system at the lowest flow rate that can be felt at the discharge during any brazing procedures to prevent soot buildup inside the pipes.
 - It is recommended to replace the liquid line filter-dryer any time the refrigeration system has been exposed to the atmosphere.
 - Place a wet rag around any valves being installed, as almost all valve types have non-metallic seats or seals that will be damaged by excessive heat, and aim the torch flame away from the valve body. Solder only one joint at a time and cool joints down in between.
- 2. Pressure test the system with nitrogen. It is recommended to check for leaks using leak detection spray, Spray Nine, or soapy water. Check at 10, 25, 50 and 100 psig. Allow the system to sit at 100 psig for at least an hour, then re-check. With a laptop connected, the PC App may be used to graph the nitrogen pressure (Graphs menu--> Refrigeration Pressure and Temperature Graphs) to make any downward trend due to a leak apparent. Be aware that changing room temperature can also cause upward or downward trends in nitrogen pressure.

Vacuuming & Charging Procedure

After completion of repairs and nitrogen pressure testing, the refrigeration circuit is ready for vacuuming.

- 1. Release the nitrogen pressure and connect the vacuum pump to the charging manifold. Start the vacuum pump and open the charging manifold valves. Vacuum until the vacuum gauge remains at less than 500 microns for at least 1 minute with the vacuum pump valve closed.
- 2. Close the charging manifold valves then shut off and disconnect the vacuum pump. Place a refrigerant tank with the proper refrigerant on a scale and connect it to the charging manifold. Purge the hose to the tank.
- 3. Weigh in the appropriate amount **and type** of refrigerant through the low pressure (suction) service port. Refer to the nameplate label on the unit for the proper refrigerant type and charge amount.
- 4. If the unit will not accept the entire charge, the remainder can be added through the low pressure service port after the unit has been restarted.

Compressor Replacement Procedure


- 1. Pump down the unit as per the Pumpdown Procedure above. If there was a compressor burn out (motor failure), the refrigerant cannot be reused and must be disposed of according to local codes.
- 2. Disconnect piping.
- 3. Replace the compressor. Replace the liquid line filter-dryer. Always ensure nitrogen is flowing through the system at the lowest flow rate that can be felt at the discharge during any brazing procedures to prevent soot buildup inside the pipes.
- 4. Vacuum the unit as per above procedure.
- 5. If there was a compressor burnout:
 - a) Charge the unit with **new** refrigerant and operate it for continuously for 2 hours. Pump down the unit and replace the filter-dryer. Vacuum the unit as per above procedure.
 - *b)* Charge the unit (refrigerant can be re-used) and operate it for 2-3 days. Perform an acid test. If it fails, pump down the unit and replace the filter-dryer.
 - *c)* Charge the unit (refrigerant can be re-used) and operate it for 2 weeks. Perform and acid test. If it fails, pump down the unit and replace the filter-dryer.
- 6. Charge the unit a final time. Unit should now be clean and repeated future burn-outs can be avoided.

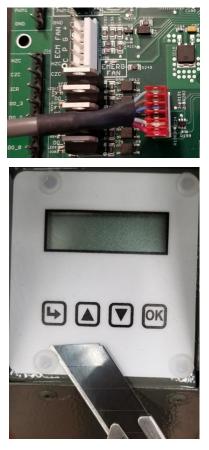
Outdoor Fan Replacement Procedure

- 1. Turn of the power to the Indoor Unit. This will ensure that power and control signals are off in the outdoor unit.
- 2. Remove the two screws that hold the electrical box cover in place and remove the cover.
- 3. Remove the two bolts that secure the front cover in place.
- 4. Loosen the four bolts that hold the fan guard in place.
- 5. Swing the front cover open.

- 6. For the fan signal cable: remove the **YELLOW** wire from the **PWM** terminal and remove the **BLACK** wire from the **GND** terminal.
- For the fan power cable: remove the BLUE wire from L1, the RED wire from L2 and the YELLOW/GREEN wire from GND.
- 8. Pull the cables out of the electrical box, noting the path for installation of the new fan. Cut wire ties if necessary.
- 9. Remove the four fan guard bolts and remove the fan and guard as one.
- 10. Installation is the reverse of removal.

Control Board Replacement Procedure

- 1. Turn the power off to the unit.
- 2. Take a picture of the control board and connectors for reference. The picture in Appendix A may also be helpful.
- 3. Carefully remove all green terminal strips on the left side, the right side and the bottom of the control board. They pull straight off the board, with no need to disconnect wires from their screw terminals. You may need to wiggle them from both ends for the 8 pin ones.
- 4. Remove the red six pin display board connector from the left side of the control board (marked DISPLAY on the board).



- 5. Remove all connectors from the top of the control board. Each connector (or wire) should be marked already from the factory, e.g. HPS1, LP1, TS1, etc.. This matches the marking on the control board.
- 6. The control board is held in place at its four corners. Squeeze each standoff by hand or with needle nose pliers if necessary and carefully pull the corner of the board off of the standoff.
- 7. Once the control board has been removed, if there are any other standoffs left (they have the bottom snap cut off) remove them as well.
- 8. Carefully remove the new control board from the static bag it was shipped in. Place any cut off standoffs from the old board into the same locations on the new board.
- 9. Align the control board with the four corner standoffs in the electrical box then push on each corner until they snap in place.
- Connect the top connectors to the control board. Refer to the Step 2 picture if necessary for proper locations. Note that the connector with the resistor (no cable) goes on CTS. Note that the connector to the left of CTS is marked HTS on older boards, and ODTS on newer boards.
- 11. Check each of the connectors from Step 10 to ensure they are properly aligned and that no pins are showing.
- 12. Connect the green terminal strips to the left side, right side and bottom of the control board. Refer to the **Step 2** picture if necessary for locations.
- 13. Turn the power on to the heat pump. Ensure the LCD Interface comes on. Note the firmware version. After EEV zeroing and Random Start countdown the display should begin alternating data.
- 14. If the replacement control board was pre-configured for this unit at the factory then the system is ready for operation. If it was not then use the PC App corresponding to the unit's firmware version to configure the unit. Refer to the **Tools -> Configuration** menu in the PC APP section.

LCD Interface (Display) Board Replacement Procedure

- 1. Turn the power off to the unit.
- 2. Remove the display board cable connector from the control board.

3. Using a sharp utility knife with a long blade, slice each of the display board standoff heads off, taking care to not damage the lexan cover.

- 4. Pull the display board from the unit.
- 5. Remove the display board cable connector from the back of the display board.
- 6. Place a new display board standoff into each of the four holes in the cabinet.
- 7. Remove the new display board from the static bag it was shipped in.
- 8. Connect one end of the display board cable to the back of the display board. Ensure the connector is properly aligned and that no pins are showing.
- 9. Place the display board in position and align the four standoffs into the four holes of the board.
- 10. Push on each corner of the board until each standoff snaps in place, while pushing on the front of the standoff to keep it from popping out of the cabinet hole.
- 11. Connect the other end of the display board cable to the control board, ensuring the connector is aligned properly and that no pins are showing.
- 12. Turn the power on to the unit and verify the display works.
- 13. Once the display begins to scroll data, test each of the buttons to ensure they work. Push the Arrow button to enter the Main Menu, then use the Up and Down to move through the list, then push the OK button to exit again. If any of the buttons seem hard to press, repeat Step 10 and then test the buttons again.

Model Specific Information

Table 29 -	Shipping Infor	mation - In	door Unit								
MODEL	WEIGHT	DIMENSIONS in (cm)									
MODEL	lb. (kg)	L	W	н							
ATF-45	450 (205)	44 (112)	36 (91)	66 (167)							
ATF-55	490 (223)	44 (112)	36 (91)	66 (167)							
ATF-65	505 (230)	44 (112)	36 (91)	66 (167)							
ATF-75	530 (240)	44 (112)	36 (91)	66 (167)							

Table 31 - Refrigerant Charge

	-	-				
MODEL	lb	kg	Refrigerant	Oil Type		
ATF-45	7.5	3.4	R410a	POE		
ATF-55	11.0	5.0	R410a	POE		
ATF-65	12.0	5.5	R410a	POE		
ATF-75	13.0	5.9	R410a	POE		

Oil capacity is marked on the compressor label.

- Refrigerant charge is subject to revision; actual charge

is indicated on the unit nameplate.

Table 30 - Shipping Information - Outdoor Unit

MODEL	WEIGHT	DIM	ENSIONS ir	n (cm)
MODEL	lb. (kg)	L	W	н
ACE-45	230 (104)	36 (91)	70 (178)	45 (114)
ACE-55	230 (104)	36 (91)	70 (178)	45 (114)
ACE-65	295 (134)	36 (91)	70 (178)	56 (142)
ACE-75	295 (134)	36 (91)	70 (178)	56 (142)

Table 32 - Indoor Loop Flow Rates

MODEL	gpm	L/s
ATF-45	10	0.63
ATF-55	12	0.76
ATF-65	14	0.88
ATF-75	16	1.0

Table 33 -	Operating Tempe	erature Limits			
Loop	Mode	Parameter	(°F)	(°C)	Note
	AIR Heating	Minimum EAT	60	15	
	AIR Heating	Maximum EAT	100	38	
	WATER Heating	Minimum ELT	60	15	
INDOOR	WATER Heating	Maximum LLT	120	49	
	AIR Cooling	Minimum EAT	50	10	
	AIR Cooling	Maximum EAT	100	38	
OUTDOOR	Heating	Minimum EAT	-7	-22	Compressor automatically stops below this outdoor temperature.
OUTDOOR	Cooling	Maximum EAT	120	49	Compressor automatically stops above this outdoor temperature.

Table 34 -	Outdoo	r Unit	Sound	Levels	(dBA)*				Table 35 - Indoor Unit Sound (dBA)*					
MODEL	1 ft dis	tance	3 ft dis	stance	5 ft dis	stance	10 ft d	istance	MODEL	1 ft distance	3 ft distance			
MODEL	Front	Side	Front	Sides	Front	Sides	Front	Sides	MODEL	The distance	5 it distance			
ACE-45	68.0	61.1	66.4	59.7	63.5	57.4	59.3	56.7	ATF-45	58.4	56.6			
ACE-55	72.4	66.8	71.1	64.8	68.0	62.9	64.6	61.1	ATF-55	60.7	59.8			
ACE-65	70.3	62.9	65.9	60.5	62.2	58.1	56.6	54.0	ATF-65	61.4	59.7			
ACE-75	71.7	66.8	68.7	63.7	65.7	61.2	60.0	57.1	ATF-75	65.5	64.8			
* At maximu with outdoor				s in heat	ing mod	e, or in c	cooling n	node	* With all doors	installed.				

Pressure Drop Data

	ydronic Loop ressure				Water	104°F			
	prop Data	AT	F-45	ATE	-55	ATF	-65	ATI	-75
gpm	L/s	psi	kPa	psi	kPa	psi	kPa	psi	kPa
5	0.32	1.1	7.6						
6	0.38	1.6	11	1.1	7.6	1.1	7.6	1.1	7.6
7	0.44	1.9	13	1.5	10	1.5	10	1.4	10
8	0.50	2.6	18	1.8	12	1.8	12	1.8	12
9	0.57	3.2	22	2.2	15	2.2	15	2.1	14
10	0.63	3.8	26	2.7	19	2.7	19	2.4	17
11	0.69	4.3	30	2.8	19	2.8	19	2.9	20
12	0.76	5.2	36	3.4	23	3.4	23	3.6	25
13	0.82	5.9	41	4	28	4	28	4.1	28
14	0.88	6.7	46	4.7	32	4.7	32	4.7	32
15	0.95	8.0	55	5.6	39	5.6	39	5.5	38
16	1.01			6.1	42	6.1	42	6.3	43

Standard Capacity Ratings

Standard CSA C656 (ARI 210-240).

< Preliminary >

Table	37 - Sta	ndard Ca	apacity	/ Rating	ıs - <mark>Air</mark> I	Heati	ng									
Indoor Air H12 - Outdoor Air 47°F (8.3°C 70°F (21°C) db / 60°F (15.6°C) wb H12 - Outdoor Air 47°F (8.3°C									H22 - Outdoor Air 35°F (1.7°C) H32- Outdoor Air 17°F (
Model	Ind Airf		Stage	Input Energy	Capad	city	COP _H	Input Energy	Input Energy Capacity COP			Input Energy	Сара	city	COP _H	
	cfm	L/s		Watts	Btu/hr	kW	W/W	Watts	Btu/hr	kW	W/W	Watts	Btu/hr	kW	W/W	
45	1200	566	2	2,290	30,100	8.8	3.85	2,240	25,500	7.5	3.34	2,100	19,600	5.8	2.74	
55	1500	708	2	3,110	40,700	11.9	3.83	3,030	34,400	10.1	3.33	2,760	25,700	7.5	2.72	
65	1900	897	2	3,955	51,800	15.2	3.84	3,810	43,200	12.7	3.32	3,560	32,800	9.6	2.70	
75	2100	991	2	4,550	59,400	17.4	3.83	4,485	50,700	14.9	3.31	4,295	39,000	11.4	2.66	

Table	38 - Sta	ndard Ca	apacity	Rating	s - <mark>Air C</mark>	ooling	9						60 Hz
67	Indoo 80°F (26. °F (19.°C) \	7°C) DB /	RH	B2 - Outdoor Air 82°F (27.8°C) A2 - Outdoor Air 95°F (35°C)									
Model	Ind Airf		Stage	Input Energy	Capa	city	EER	COPc	Input Energy	Сара	city	EER	COPc
	cfm	L/s]	Watts	Btu/hr	kW	Btu/W-hr	W/W	Watts	Btu/hr	kW	Btu/W-hr	W/W
45	1200	566	2	2,235	34,100	10.0	15.2	4.47	2,605	31,400	9.2	12.1	3.53
55	1500	708	2	2,925	44,000	12.9	15.0	4.41	3,410	40,600	11.9	11.9	3.49
65	1900	897	2	3,725	55,400	16.2	14.9	4.36	4,310	51,200	15.0	11.9	3.48
75	2100	991	2	4,385	64,600	18.9	14.7	4.31	5,010	59,200	17.4	11.8	3.46

Table	39 - Sta	andar	d Cap	acity	Rating	gs - <mark>Hyc</mark>	Ironic H	leatin	g							(60 Hz
I	Indoor Lo	op EL1	۲ 104°F	(40°C)		H12 - Ou	(8.3°C)	H22 - Outdoor Air 35°F (1.7°C) H32- Outdoor Air 17°F (-8.3							-8.3°C)		
Model	Indo Liquid I	-	Pres Dr		Stage	Input Energy	Capa	city	COP _H	Input Energy	Сара	Capacity COP _H			Сара	city	COP _H
	gpm	L/s	psi	kPa		Watts	Btu/hr	kW	W/W	Watts	Btu/hr	kW	W/W	Watts	Btu/hr	kW	W/W
45	10.0	0.63	3.8	26	2	2518	33,600	9.9	3.91	2581	29,200	8.6	3.32	2742	22,000	6.5	2.35
55	12.0	0.76	4.1	28	2	3270	43,400	12.7	3.89	3320	37,400	11.0	3.30	3615	28,700	8.4	2.32
65	14.0	0.88	5.0	34	2	3866	51,000	14.9	3.86	3837	43,400	12.7	3.31	4272	33,900	9.9	2.33
75	16.0	1.01	4.0	36	2	4417	58,600	17.2	3.88	4527	50,200	14.7	3.25	4893	38,400	11.2	2.30

Air Heating/Cooling Performance

	OUTE	DOOR LOOI	P (Air)	ELE	CTRIC	CAL			IND	oor L	OOP (Ai				
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (Btu/hr)	Compressor Current (A)		Input Power (W)	EAT	Cond. Temp.	Airflow (cfm)	LAT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн		
48	-5°F	-16	6,563	8.3	175	2,109		92	1,200	82	12	13,763	1.91		
TING	5°F	-8	9,208	8.7	175	2,073		96	1,200	84	14	16,282	2.30		
Ē	15°F	0	11,862	9.2	175	2,097		100	1,200	86	16	19,018	2.66		
	25°F	8	14,780	9.7	175	2,164	70°F	104	1,200	89	19	22,167	3.00		
HEA	35°F	16	17,901	10.2	175	2,241	101	108	1,200	91	21	25,548	3.34		
	45°F	25	21,314	10.7	175	2,293		112	1,200	94	24	29,141	3.72		
	55°F	32	24,824	11.2	175	2,365		116	1,200	97	27	32,894	4.08		
	65°F	40	28,562	11.7	175	2,454		120	1,200	101	31	36,936	4.41		
			D (Air)	ELE	CTDIC	٠ <u>٨</u> ١						D (Air @ 5	00/ PU)		
	OUTE	DOOR LOOI	P (Air)	ELE	CTRIC	AL				INDOC	DR LOO	P (Air @ 5	0% RH)	1	
	OUTE Outdoor Air Temperature	Condensing Temperature	Heat Rejected	ELE Compressor Current (A)	CTRIC Fan (W)	CAL Input Power (W)	EAT	Evap. Temp.	Airflow (cfm)	LAT (°F)	Delta T (°F)	P (Air @ 5 Latent (Btu/hr)	0% RH) Sensible (Btu/hr)	Cooling (Btu/hr)	EER
	Outdoor Air	Condensing	Heat Rejected	Compressor	Fan	Input	EAT		-	LAT	Delta T	Latent	Sensible	•	EER 23.5
Ð	Outdoor Air Temperature	Condensing Temperature	Heat Rejected (Btu/hr)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Temp.	(cfm)	LAT (°F)	Delta T (°F)	Latent (Btu/hr)	Sensible (Btu/hr)	(Btu/hr)	
LING	Outdoor Air Temperature 50°F	Condensing Temperature 61	Heat Rejected (Btu/hr) 47,054	Compressor Current (A) 6.4	Fan (W) 170	Input Power (W) 1,739	EAT	Temp. 46	(cfm) 1,200	LAT (°F) 56	Delta T (°F) 24	Latent (Btu/hr) 12,370	Sensible (Btu/hr) 28,455	(Btu/hr) 40,825	23.5
OLING	Outdoor Air Temperature 50°F 60°F	Condensing Temperature 61 71	Heat Rejected (Btu/hr) 47,054 45,268	Compressor Current (A) 6.4 6.8	Fan (W) 170 170	Input Power (W) 1,739 1,852		Temp. 46 47	(cfm) 1,200 1,200	LAT (°F) 56 58	Delta T (°F) 24 23	Latent (Btu/hr) 12,370 11,712	Sensible (Btu/hr) 28,455 26,941	(Btu/hr) 40,825 38,653	23.5 20.9
Sooling	Outdoor Air Temperature 50°F 60°F 70°F	Condensing Temperature 61 71 82	Heat Rejected (Btu/hr) 47,054 45,268 43,764	Compressor Current (A) 6.4 6.8 7.5	Fan (W) 170 170 170	Input Power (W) 1,739 1,852 2,018	EAT 80°F	Temp. 46 47 47	(cfm) 1,200 1,200 1,200	LAT (°F) 56 58 59	Delta T (°F) 24 23 21	Latent (Btu/hr) 12,370 11,712 11,085	Sensible (Btu/hr) 28,455 26,941 25,499	(Btu/hr) 40,825 38,653 36,583	23.5 20.9 18.1
COOLING	Outdoor Air Temperature 50°F 60°F 70°F 80°F	Condensing Temperature 61 71 82 92	Heat Rejected (Btu/hr) 47,054 45,268 43,764 42,248	Compressor Current (A) 6.4 6.8 7.5 8.3	Fan (W) 170 170 170 170	Input Power (W) 1,739 1,852 2,018 2,191		Temp. 46 47 47 47	(cfm) 1,200 1,200 1,200 1,200	LAT (°F) 56 58 59 60	Delta T (°F) 24 23 21 20	Latent (Btu/hr) 12,370 11,712 11,085 10,446	Sensible (Btu/hr) 28,455 26,941 25,499 24,030	(Btu/hr) 40,825 38,653 36,583 34,476	23.5 20.9 18.1 15.7
COOLING	Outdoor Air Temperature 50°F 60°F 70°F 80°F 90°F	Condensing Temperature 61 71 82 92 103	Heat Rejected (Btu/hr) 47,054 45,268 43,764 42,248 41,028	Compressor Current (A) 6.4 6.8 7.5 8.3 9.4	Fan (W) 170 170 170 170 170	Input Power (W) 1,739 1,852 2,018 2,191 2,456		Temp. 46 47 47 47 48	(cfm) 1,200 1,200 1,200 1,200 1,200	LAT (°F) 56 58 59 60 61	Delta T (°F) 24 23 21 20 19	Latent (Btu/hr) 12,370 11,712 11,085 10,446 9,679	Sensible (Btu/hr) 28,455 26,941 25,499 24,030 22,691	(Btu/hr) 40,825 38,653 36,583 34,476 32,370	23.5 20.9 18.1 15.7 13.2

49

1,200

65

15

7,581

17,774

25,356

7.6

ATF-45-HACW-P-1T R410a, 60 Hz, ZPS30K5E-PFV

	OUTE	DOOR LOOP	P (Air)	ELE	CTRIC	AL			IND	OOR L	OOP (Aii	r)			
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (W)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Cond. Temp.	Airflow (L/s)	LAT (°C)	Delta T (°C)	Heating (W)	СОРн		
	-21°C	-26.7	1,923	8.3	175	2,109		33.3	566	27.5	6.4	4,032	1.91		
TING	-15°C -9°C	-22.2 -17.8	2,698 3.475	8.7 9.2	175 175	2,073 2,097		35.6 37.8	566 566	28.6 29.9	7.5 8.8	4,770 5,572	2.30 2.66		
F	-4°C	-13.4	4,331	9.7	175	2,164	21°C	40.0	566	31.4	10.3	6,495	3.00		
HEZ	2°C	-8.8	5,245	10.2	175	2,241	210	42.2	566	32.9	11.8	7,486	3.34		
•	7°C 13°C	-3.9 0.2	6,245 7,273	10.7 11.2	175 175	2,293 2,365		44.4 46.7	566 566	34.6 36.3	13.5 15.2	8,538 9,638	3.72 4.08		
	18°C	4.6	8,368	11.7	175	2,454		48.9	566	38.2	17.1	10,822	4.41		
	OUTE	OOR LOOP	? (Air)	ELE	CTRIC	AL				INDOC	R LOOF	• (Air @ 5	0% RH)		
	Outdoor Air Temperature	Condensing Temperature	Heat Rejected (W)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Evap. Temp.	Airflow (L/s)	LAT (°C)	Delta T (°C)	Latent (W)	Sensible (W)	Cooling (W)	COP
	10°C	16.1	13,787	6.4	170	1,739		7.9	566	13.5	13.2	3,624	8,337	11,962	6.88
0	16°C	21.7	13,263	6.8	170	1,852		8.1	566	14.2	12.5	3,432	7,894	11,325	6.11
N.	21°C	27.8	12,823	7.5	170	2,018		8.3	566	14.9	11.8	3,248	7,471	10,719	5.31
0	27°C 32°C	33.3 39.4	12,379 12,021	8.3 9.4	170 170	2,191 2,456	27°C	8.6 8.8	566 566	15.5 16.2	11.1 10.5	3,061 2,836	7,041 6,649	10,101 9,484	4.61
8	32°C	45.0	11,622	9.4	170	2,430		9.0	566	16.9	9.8	2,630	6,196	9,464 8,839	3.00
	43°C	51.1	11,228	12.2	170	2,993		9.2	566	17.6	9.0	2,438	5,716	8,155	2.72
	49°C	57.2	10,829	14.1	170	3,319		9.4	566	18.4	8.2	2,221	5,208	7,429	2.24

120°F

135

36,960

14.1

170

3,319

Hydronic Performance

	F-45-HA	5VV-F-1	R410a, 0	60 Hz, ZPS3								
	OUTI	DOOR LOOP	P (Air)	ELECT	RICAL			INDO	OR LOO	P (Water)		
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (Btu/hr)	Compressor Current (A)	Input Power (W)	ELT	Condensing Temperature	Liquid Flow (gpm)	LLT	Delta T	Heating (Btu/hr)	СОРн
	-5°F	-16°F	5,530	13.5	3290	102°F	110°F			3°F	16,600	1.48
	5°F	-8°F	9,490	11.5	2830	101°F	110°F			4°F	19,000	1.96
	15°F	1°F	12,600	10.5	2620	101°F	109°F			4°F	21,400	2.39
	25°F	9°F	17,100	10.1	2520	100°F	109°F	10	105°F	5°F	25,500	2.97
	35°F	17°F	21,400	9.7	2430	99°F	109°F	10	105 F	6°F	29,500	3.56
	45°F	26°F	25,200	9.4	2360	98°F	109°F			7°F	33,100	4.12
Ž	55°F	34°F	28,800	9.1	2270	98°F	109°F			7°F	36,400	4.70
Ē	65°F	43°F	32,700	8.8	2180	97°F	108°F			8°F	39,900	5.38
HEATING	15°F 25°F 35°F 45°F 55°F 65°F	-16°F	-	-	-	-	-				limited to 105°	
I		-8°F	-	-	-	-	-				utdoor tempera	
		1°F	10,900	13.0	3180	116°F	124°F			4°F	21,300	1.98
		9°F	14,900	12.3	3040	115°F	124°F	10	120°F	5°F	25,100	2.42
		17°F	18,900	11.8	2920	114°F	124°F			6°F	28,600	2.88
		26°F	22,400	11.4	2820	114°F	124°F			6°F	31,800	3.30
		34°F	25,700	11.0	2710	113°F	123°F			7°F	34,800	3.76
	65°F	43°F	29,300	10.6	2600	112°F	123°F			8°F	38,000	4.28
<u>//ETRIC</u>	2											
<u>IETRIC</u>	45°F 55°F 65°F C	DOOR LOOF	P (Air)	ELECT	RICAL			INDO	OR LOO	P (Water)		
METRIC		-	• (Air) Heat Absorbed (W)	ELECTI Compressor Current (A)	RICAL Input Power (W)	ELT	Condensing Temperature	INDO Liquid Flow (L/s)	OR LOO	P (Water) Delta T	Heating (W)	COPH
METRIC	OUTE Outdoor Air	Evaporating	Heat Absorbed	Compressor	Input	ELT 39°C	•	Liquid Flow				COP _H 1.48
METRIC	OUTE Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (W)	Compressor Current (A)	Input Power (W)		Temperature	Liquid Flow		Delta T	(W)	
<u>NETRIC</u>	OUTE Outdoor Air Temperature -21°C	Evaporating Temperature -27°C	Heat Absorbed (W) 1620	Compressor Current (A) 13.5	Input Power (W) 3290	39°C	Temperature 43°C	Liquid Flow		Delta T 1.8°C	(W) 4,860	1.48
<u>METRIC</u>	OUTE Outdoor Air Temperature -21°C -15°C	Evaporating Temperature -27°C -22°C	Heat Absorbed (W) 1620 2780	Compressor Current (A) 13.5 11.5	Input Power (W) 3290 2830	39°C 38°C	Temperature 43°C 43°C	Liquid Flow (L/s)	LLT	Delta T 1.8°C 2.1°C	(W) 4,860 5,560	1.48 1.96
<u>METRIC</u>	OUTE Outdoor Air Temperature -21°C -15°C -9°C	Evaporating Temperature -27°C -22°C -18°C	Heat Absorbed (W) 1620 2780 3700	Compressor Current (A) 13.5 11.5 10.5	Input Power (W) 3290 2830 2620	39°C 38°C 38°C	Temperature 43°C 43°C 43°C	Liquid Flow		Delta T 1.8°C 2.1°C 2.4°C	(W) 4,860 5,560 6,270	1.48 1.96 2.39
	OUTT Outdoor Air Temperature -21°C -15°C -9°C -4°C	Evaporating Temperature -27°C -22°C -18°C -13°C	Heat Absorbed (W) 1620 2780 3700 5020	Compressor Current (A) 13.5 11.5 10.5 10.1	Input Power (W) 3290 2830 2620 2520	39°C 38°C 38°C 38°C	Temperature 43°C 43°C 43°C 43°C 43°C	Liquid Flow (L/s)	LLT	Delta T 1.8°C 2.1°C 2.4°C 2.8°C	(W) 4,860 5,560 6,270 7,480	1.48 1.96 2.39 2.97
	OUTT Outdoor Air Temperature -21°C -15°C -9°C -4°C 2°C	Evaporating Temperature -27°C -22°C -18°C -13°C -8°C	Heat Absorbed (W) 1620 2780 3700 5020 6280	Compressor Current (A) 13.5 11.5 10.5 10.1 9.7	Input Power (W) 3290 2830 2620 2520 2430	39°C 38°C 38°C 38°C 38°C 37°C	Temperature 43°C 43°C 43°C 43°C 43°C 43°C 43°C	Liquid Flow (L/s)	LLT	Delta T 1.8°C 2.1°C 2.4°C 2.8°C 3.3°C	(W) 4,860 5,560 6,270 7,480 8,660	1.48 1.96 2.39 2.97 3.56
	OUTT Outdoor Air Temperature -21°C -15°C -9°C -4°C 2°C 7°C	Evaporating Temperature -27°C -22°C -18°C -13°C -8°C -4°C	Heat Absorbed (W) 1620 2780 3700 5020 6280 7400	Compressor Current (A) 13.5 11.5 10.5 10.1 9.7 9.4	Input Power (W) 3290 2830 2620 2520 2430 2360	39°C 38°C 38°C 38°C 37°C 37°C	Temperature 43°C 43°C 43°C 43°C 43°C 43°C 43°C 43°C 43°C	Liquid Flow (L/s)	LLT	Delta T 1.8°C 2.1°C 2.4°C 2.8°C 3.3°C 3.7°C	(W) 4,860 5,560 6,270 7,480 8,660 9,700	1.48 1.96 2.39 2.97 3.56 4.12
	OUTT Outdoor Air Temperature -21°C -15°C -9°C -4°C 2°C 7°C 13°C 18°C -21°C	Evaporating Temperature -27°C -22°C -18°C -13°C -8°C -4°C 1°C	Heat Absorbed (W) 1620 2780 3700 5020 6280 7400 8440	Compressor Current (A) 13.5 11.5 10.5 10.1 9.7 9.4 9.1	Input Power (W) 3290 2830 2620 2520 2430 2360 2270	39°C 38°C 38°C 38°C 37°C 37°C 37°C	Temperature 43°C	Liquid Flow (L/s)	LLT	Delta T 1.8°C 2.1°C 2.4°C 2.8°C 3.3°C 3.7°C 4.0°C 4.4°C LLT is	(W) 4,860 5,560 6,270 7,480 8,660 9,700 10,700 11,700 <i>limited to 40.5</i>	1.48 1.96 2.39 2.97 3.56 4.12 4.70 5.38 °C at
HEATING	OUTT Outdoor Air Temperature -21°C -15°C -9°C -4°C 2°C 7°C 13°C 18°C	Evaporating Temperature -27°C -22°C -18°C -13°C -8°C -4°C 1°C 6°C	Heat Absorbed (W) 1620 2780 3700 5020 6280 7400 8440	Compressor Current (A) 13.5 11.5 10.5 10.1 9.7 9.4 9.1	Input Power (W) 3290 2830 2620 2520 2430 2360 2270	39°C 38°C 38°C 38°C 37°C 37°C 37°C	Temperature 43°C	Liquid Flow (L/s)	LLT	Delta T 1.8°C 2.1°C 2.4°C 2.8°C 3.3°C 3.7°C 4.0°C 4.4°C LLT is	(W) 4,860 5,560 6,270 7,480 8,660 9,700 10,700 11,700	1.48 1.96 2.39 2.97 3.56 4.12 4.70 5.38 °C at
	OUTE Outdoor Air Temperature -21°C -15°C -9°C 2°C 7°C 13°C 18°C -21°C -35°C	Evaporating Temperature -27°C -22°C -18°C -13°C -8°C -4°C 1°C 6°C -27°C -22°C -18°C	Heat Absorbed (W) 1620 2780 3700 5020 6280 7400 8440 9580 -	Compressor Current (A) 13.5 11.5 10.5 10.1 9.7 9.4 9.1 8.8 - - 13.0	Input Power (W) 3290 2830 2620 2520 2430 2360 2270 2180 -	39°C 38°C 38°C 38°C 37°C 37°C 37°C 36°C - - 47°C	Temperature 43°C 50°C	Liquid Flow (L/s)	LLT	Delta T 1.8°C 2.1°C 2.4°C 2.8°C 3.3°C 3.7°C 4.0°C 4.4°C <i>LLT is</i> <i>these o</i> 2.4°C	(W) 4,860 5,560 6,270 7,480 8,660 9,700 10,700 11,700 <i>limited to 40.5</i>	1.48 1.96 2.39 2.97 3.56 4.12 4.70 5.38 °C at
	OUTE Outdoor Air Temperature -21°C -15°C -9°C -4°C 2°C 7°C 13°C 18°C -21°C -15°C	Evaporating Temperature -27°C -22°C -18°C -13°C -8°C -4°C 1°C 6°C -27°C -27°C	Heat Absorbed (W) 1620 2780 3700 5020 6280 7400 8440 9580 - -	Compressor Current (A) 13.5 11.5 10.5 10.1 9.7 9.4 9.1 8.8 - -	Input Power (W) 3290 2830 2620 2520 2430 2360 2270 2180 - -	39°C 38°C 38°C 38°C 37°C 37°C 37°C 36°C -	Temperature 43°C 43°C	Liquid Flow (L/s) 0.63	40.5°C	Delta T 1.8°C 2.1°C 2.4°C 2.8°C 3.3°C 3.7°C 4.0°C 4.4°C LLT is these o	(W) 4,860 5,560 6,270 7,480 8,660 9,700 10,700 11,700 limited to 40.5 utdoor tempere	1.48 1.96 2.39 2.97 3.56 4.12 4.70 5.38 °C at atures
	OUTT Outdoor Air Temperature -21°C -15°C -9°C -4°C 2°C 7°C 13°C 18°C -21°C -9°C -4°C 2°C 7°C 13°C 18°C -21°C -4°C 2°C	Evaporating Temperature -27°C -22°C -18°C -13°C -8°C -4°C 1°C 6°C -27°C -22°C -18°C -30°C -27°C -23°C -13°C -38°C	Heat Absorbed (W) 1620 2780 3700 5020 6280 7400 8440 9580 - - 3180 4370 5530	Compressor Current (A) 13.5 11.5 10.5 10.1 9.7 9.4 9.1 8.8 - - 13.0 12.3 11.8	Input Power (W) 3290 2830 2620 2520 2430 2360 2270 2180 - - 3180 3040 2920	39°C 38°C 38°C 38°C 37°C 37°C 37°C 36°C - - 47°C 46°C 46°C	Temperature 43°C 43°C 43°C 43°C 43°C 43°C 43°C 43°C 43°C 51°C 51°C 51°C	Liquid Flow (L/s)	LLT	Delta T 1.8°C 2.1°C 2.4°C 3.3°C 3.7°C 4.0°C 4.4°C LLT is these or 2.4°C 3.2°C	(W) 4,860 5,560 6,270 7,480 8,660 9,700 10,700 11,700 limited to 40.5 utdoor tempera 6,240	1.48 1.96 2.39 2.97 3.56 4.12 4.70 5.38 °C at atures 1.98 2.42 2.88
	OUTT Outdoor Air Temperature -21°C -15°C -9°C -4°C 2°C 7°C 13°C 18°C -21°C -35°C -21°C	Evaporating Temperature -27°C -22°C -18°C -13°C -8°C -4°C 1°C 6°C -27°C -27°C -38°C	Heat Absorbed (W) 1620 2780 3700 5020 6280 7400 8440 9580 - - 3180 4370	Compressor Current (A) 13.5 11.5 10.5 10.1 9.7 9.4 9.1 8.8 - - 13.0 12.3	Input Power (W) 3290 2830 2620 2520 2430 2360 2270 2180 - - 3180 3040	39°C 38°C 38°C 38°C 37°C 37°C 37°C 36°C - - 47°C 47°C 46°C	Temperature 43°C 51°C 51°C	Liquid Flow (L/s) 0.63	40.5°C	Delta T 1.8°C 2.1°C 2.4°C 3.3°C 3.7°C 4.0°C 4.4°C LLT is these or 2.4°C 2.8°C	(W) 4,860 5,560 6,270 7,480 8,660 9,700 10,700 11,700 limited to 40.5 utdoor tempere 6,240 7,350	1.48 1.96 2.39 2.97 3.56 4.12 4.70 5.38 °C at atures 1.98 2.42
	OUTT Outdoor Air Temperature -21°C -15°C -9°C -4°C 2°C 7°C 13°C 18°C -21°C -9°C -4°C 2°C 7°C 13°C 18°C -21°C -4°C 2°C	Evaporating Temperature -27°C -22°C -18°C -13°C -8°C -4°C 1°C 6°C -27°C -22°C -18°C -30°C -27°C -23°C -13°C -38°C	Heat Absorbed (W) 1620 2780 3700 5020 6280 7400 8440 9580 - - 3180 4370 5530	Compressor Current (A) 13.5 11.5 10.5 10.1 9.7 9.4 9.1 8.8 - - 13.0 12.3 11.8	Input Power (W) 3290 2830 2620 2520 2430 2360 2270 2180 - - 3180 3040 2920	39°C 38°C 38°C 38°C 37°C 37°C 37°C 36°C - - 47°C 46°C 46°C	Temperature 43°C 43°C 43°C 43°C 43°C 43°C 43°C 43°C 43°C 51°C 51°C 51°C	Liquid Flow (L/s) 0.63	40.5°C	Delta T 1.8°C 2.1°C 2.4°C 3.3°C 3.7°C 4.0°C 4.4°C LLT is these or 2.4°C 3.2°C	(W) 4,860 5,560 6,270 7,480 8,660 9,700 10,700 11,700 limited to 40.5 utdoor temperation 6,240 7,350 8,390	1.48 1.96 2.39 2.97 3.56 4.12 4.70 5.38 °C at atures 1.98 2.42 2.88

ATF-45-HACW-P-1T R410a, 60 Hz, ZPS30K5E-PFV

Air Heating/Cooling Performance

39,146

36,180

33,037

11.1

9.1

7.5

	OUTE	DOOR LOOP	P (Air)	ELE	CTRIC	CAL			IND	OOR L	OOP (Ai	ir)			
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (Btu/hr)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Cond. Temp.	Airflow (cfm)	LAT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн		
	-5°F	-17	7,655	12.1	185	2,552		91	1,500	81	11	16,367	1.88		
ž	5°F	-8	11,495	12.6	185	2,651		95	1,500	84	14	20,542	2.27		
TING	15°F	0	15,352	13.1	185	2,765		99	1,500	87	17	24,789	2.63		
	25°F	8	19,493	13.7	185	2,891	70°F	103	1,500	90	20	29,359	2.98		
Ĩ	35°F	17	23,987	14.3	185	3,028	/01	107	1,500	93	23	34,321	3.32		
	45°F	25	29,148	14.9	185	3,114		111	1,500	97	27	39,777	3.74		
	55°F	33	34,697	15.5	185	3,241		115	1,500	101	31	45,758	4.14		
	65°F	41	40,532	16.1	185	3,368		119	1,500	105	35	52,027	4.53		
	OUTE	OOR LOOP	P (Air)	ELE	CTRIC	CAL				INDOC	R LOO	P (Air @ 5	0% RH)		
	Outdoor Air Temperature	Condensing Temperature	Heat Rejected (Btu/hr)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Evap. Temp.	Airflow (cfm)	LAT (°F)	Delta T (°F)	Latent (Btu/hr)	Sensible (Btu/hr)	Cooling (Btu/hr)	EER
	50°F	62	58,709	8.7	195	2,164		46	1,500	56	24	15,432	35,499	50,931	23.5
	60°F	72	57,478	9.4	195	2,367		46	1,500	57	23	14,849	34,157	49,006	20.7
	70°F	83	56,122	10.5	195	2,613		46	1,500	58	22	14,184	32,627	46,811	17.9
0	80°F	93	54,638	11.8	195	2,853	80°F	47	1,500	59	21	13,486	31,022	44,508	15.6
8	90°F	104	53,224	13.4	195	3,194	00 F	47	1,500	60	20	12,535	29,388	41,923	13.1
	40005	444	F4 000	45.0	405	0 500		40	4 500	00	40	44 705	07 440	00 4 4 0	44.4

48

48

48

1,500

1,500

1,500

62

63

65

18

17

15

11,705

10,818

9,878

27,442

25,362

23,159

ATF-55-HACW-P-1T R410a, 60 Hz, ZPS40K5E-PFV

	OUTI	DOOR LOOP	P (Air)	ELE	CTRIC	CAL			IND	OOR L	OOP (Ai	r)			
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (W)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Cond. Temp.	Airflow (L/s)	LAT (°C)	Delta T (°C)	Heating (W)	СОРн		
Æ	-21°C -15°C	-26.9 -22.3	2,243 3,368	12.1 12.6	185 185	2,552 2,651		32.8 35.0	708 708	27.2 28.7	6.1 7.6	4,795 6,019	1.88		
DNI	-9°C	-17.8	4,498	13.1	185	2,765		37.2	708	30.3	9.2	7,263	2.63		
	-4°C 2°C	-13.3 -8.6	5,711 7,028	13.7 14.3	185 185	2,891 3,028	21°C	39.4 41.7	708 708	32.0 33.8	10.9 12.7	8,602 10,056	2.98 3.32		
I	7°C	-3.9	8,540	14.9	185	3,114		43.9	708	35.8	14.7	11,654	3.74		
	13°C 18°C	0.7 4.9	10,166 11,876	15.5 16.1	185 185	3,241 3,368		46.1 48.3	708 708	38.1 40.4	16.9 19.3	13,407 15,244	4.14 4.53		
	OUTI	DOOR LOOP	P (Air)	ELE	CTRIC	AL				INDOC	R LOOP	• (Air @ 5	0% RH)		
	Outdoor Air Temperature	Condensing Temperature	Heat Rejected (W)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Evap. Temp.	Airflow (L/s)	LAT (°C)	Delta T (°C)	Latent (W)	Sensible (W)	Cooling (W)	со
5	10°C	16.7	17,202	8.7	195	2,164		7.6	708	13.5	13.1	4,522	10,401	14,923	6.9
										44.0	407	4 0 5 4	10 000	44.050	
U	16°C	22.2	16,841	9.4	195	2,367		7.8	708	14.0	12.7	4,351	10,008	14,359	
IJ	21°C	28.3	16,444	10.5	195	2,613		8.0	708	14.6	12.1	4,156	9,560	13,715	5.2
Z	21°C 27°C	28.3 33.9	16,444 16,009	10.5 11.8	195 195	2,613 2,853	27°C	8.0 8.2	708 708	14.6 15.2	12.1 11.5	4,156 3,951	9,560 9,089	13,715 13,041	5.2 4.5
Soling	21°C 27°C 32°C	28.3 33.9 40.0	16,444 16,009 15,594	10.5 11.8 13.4	195 195 195	2,613 2,853 3,194	27°C	8.0 8.2 8.4	708 708 708	14.6 15.2 15.8	12.1 11.5 10.9	4,156 3,951 3,673	9,560 9,089 8,611	13,715 13,041 12,283	6.0 5.2 4.5 3.8
OLIN	21°C 27°C	28.3 33.9	16,444 16,009	10.5 11.8	195 195	2,613 2,853	27°C	8.0 8.2	708 708	14.6 15.2	12.1 11.5	4,156 3,951	9,560 9,089	13,715 13,041	5.2 4.5

49°C

57.2

14,179

19.4

195

4,383

100°F

110°F

120°F

114

125

135

51,622

50,123

48,394

15.0

17.2

19.4

195

195

195

3,538

3,968

4,383

9.1

708

18.1

8.6

2,894

6,785

9,680

2.21

Hydronic Performance

AI	F-55-HAC	JW-P-1	R410a, 6	60 Hz, ZPS4		·						
	OUTE	DOOR LOOP	P (Air)	ELECT	RICAL			INDO	OR LOO	P (Water)		
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (Btu/hr)	Compressor Current (A)	Input Power (W)	ELT	Condensing Temperature	Liquid Flow (gpm)	LLT	Delta T	Heating (Btu/hr)	СОРн
	-5°F	-16°F	6,810	16.7	3870	102°F	110°F			3°F	19,800	1.50
	5°F	-8°F	11,800	15.7	3670	101°F	109°F			4°F	24,100	1.93
	15°F	1°F	16,200	14.8	3470	100°F	109°F			5°F	27,800	2.35
	25°F	9°F	21,400	14.0	3290	100°F	109°F	12	105°F	5°F	32,400	2.89
	35°F	17°F	27,400	13.2	3120	99°F	109°F	12	103 1	6°F	37,900	3.56
	45°F	26°F	32,600	12.8	3050	98°F	108°F			7°F	42,800	4.11
Ž	55°F	34°F	37,500	12.5	2960	97°F	108°F			8°F	47,500	4.69
Ē	65°F	43°F	42,600	12.2	2870	96°F	108°F			9°F	52,200	5.34
HEATING	-5°F	-16°F -8°F	-	-	-	-	-				limited to 105° utdoor tempera	
	15°F 25°F 35°F 45°F 55°F 65°F	-6 F 1°F	- 13,300	- 17.6	- 4120	- 115°F	- 124°F			5°F	27,100	1.93
		9°F	18,300	17.6	3920	115°F	124 F 124°F			5°F	31,400	2.35
		17°F	23,900	15.8	3730	114°F	124 T	12	120°F	6°F	36,400	2.33
		26°F	28,800	15.4	3640	113°F	123°F			7°F	41,000	3.30
	15°F 25°F 35°F 45°F 55°F 65°F	34°F	33,500	15.1	3550	112°F	123°F			8°F	45,400	3.75
		43°F	38,200	14.7	3440	111°F	123°F			9°F	49,800	4.23
VETDIA		1										
METRIC		DOOR LOOP	P (Air)	ELECT	RICAL			INDO	OR LOO	P (Water)		
	Outdoor Air Temperature		Heat Absorbed (W)		Input Power (W)	ELT	Condensing Temperature		LLT	Delta T	Heating (W)	СОРн
	-21°C	-27°C	2,000	16.7	3870	39°C	43°C	. ,		1.8°C	5,800	1.50
	-15°C	-22°C	3,460	15.7	3670	38°C	43°C			2.2°C	7,070	1.93
	-9°C	-18°C	4,750	14.8	3470	38°C	43°C			2.6°C	8,160	2.35
	-4°C	-13°C	6,270	14.0	3290	38°C	43°C	0.70	40.500	3.0°C	9,510	2.89
S	2°C	-8°C	8,040	13.2	3120	37°C	43°C	0.76	40.5°C	3.5°C	11,100	3.56
L K	7°C	-4°C	9,540	12.8	3050	37°C	42°C			4.0°C	12,500	4.11
(METRIC)	13°C	1°C	11,000	12.5	2960	36°C	42°C			4.4°C	13,900	4.69
	18°C	6°C	12,500	12.2	2870	36°C	42°C			4.8°C	15,300	5.34
HEATING	-21°C	-27°C	-	-	-	-	-				limited to 40.5°	
F	-15°C	-22°C	-	-	-	-	-				utdoor tempera	atures
N S	-9°C	-18°C	3,900	17.6	4120	46°C	51°C			2.5°C	7,950	1.93
Ī	-4°C	-13°C	5,350	16.6	3920	46°C	51°C	0.76	49°C	2.9°C	9,210	2.35
	2°C	-8°C	7,010	15.8	3730	46°C	51°C	5.70		3.4°C	10,700	2.87
					2040	4500	E490			2000	10.000	
	7°C	-4°C	8,430	15.4	3640	45°C	51°C			3.8°C	12,000	3.30
	7°C 13°C 18°C	-4°C 1°C 6°C	8,430 9,810 11,200	15.4 15.1 14.7	3640 3550 3440	45°C 45°C 44°C	51°C 51°C 51°C			4.2°C 4.6°C	12,000 13,300 14,600	3.30 3.75 4.23

ATF-55-HACW-P-1T R410a, 60 Hz, ZPS40K5E-PFV

Air Heating/Cooling Performance

	OUTE	DOOR LOOI	P (Air)	ELE	CTRIC	CAL			IND	OOR L	OOP (Ai	ir)			
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (Btu/hr)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Cond. Temp.	Airflow (cfm)	LAT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн		
0	-5°F	-17	10,119	15.3	300	3,456		91	1,900	82	12	21,916	1.86		
ž	5°F	-8	14,899	15.6	300	3,467		95	1,900	84	14	26,734	2.26		
HEATIN	15°F	0	19,721	16.2	300	3,563		99	1,900	87	17	31,882	2.62		
	25°F	8	24,813	16.8	300	3,681	70°F	103	1,900	90	20	37,378	2.97		
Ĩ	35°F	17	30,197	17.5	300	3,812		107	1,900	93	23	43,209	3.32		
	45°F	25	36,696	18.3	300	3,953		111	1,900	96	26	50,188	3.72		
	55°F	34	43,231	19.1	300	4,122		115	1,900	100	30	57,299	4.07		
	65°F	42	49,827	20.0	300	4,300		119	1,900	104	34	64,503	4.40		
	OUTE	DOOR LOOI	P (Air)	ELE	CTRIC	AL				INDOC	DR LOO	P (Air @ 5	0% RH)		
	Outdoor Air Temperature	Condensing Temperature	Heat Rejected (Btu/hr)	Compressor Current (A)		Input Power (W)	EAT	Evap. Temp.	Airflow (cfm)	LAT (°F)	Delta T (°F)	Latent (Btu/hr)	Sensible (Btu/hr)	Cooling (Btu/hr)	EER
	50°F	62	75,605	11.5	325	2,827		46	1,900	56	24	19,831	45,618	65,449	23.2
S	60°F	72	73,150	12.3	325	3,038		46	1,900	57	23	18,869	43,404	62,272	20.5

ATF-65-HACW-P-1T R410a, 60 Hz, ZPS51K5E-PFV

	Outdoor Air Temperature	Condensing Temperature	Heat Rejected (Btu/hr)	Compressor Current (A)		Input Power (W)	EAT	Evap. Temp.	Airflow (cfm)	LAT (°F)	Delta T (°F)	Latent (Btu/hr)	Sensible (Btu/hr)	Cooling (Btu/hr)	EER
	50°F	62	75,605	11.5	325	2,827		46	1,900	56	24	19,831	45,618	65,449	23.2
9	60°F	72	73,150	12.3	325	3,038		46	1,900	57	23	18,869	43,404	62,272	20.5
5	70°F	83	71,046	13.5	325	3,339		46	1,900	58	22	17,920	41,222	59,142	17.7
ō	80°F	93	68,938	14.9	325	3,640	80°F	47	1,900	60	21	16,970	39,037	56,008	15.4
8	90°F	104	67,066	16.8	325	4,050	00 F	47	1,900	61	20	15,773	36,980	52,753	13.0
•	100°F	114	65,053	18.8	325	4,469		48	1,900	62	18	14,743	34,566	49,309	11.0
	110°F	125	63,253	21.4	325	5,009		48	1,900	63	17	13,654	32,011	45,664	9.1
	120°F	135	61,121	24.1	325	5,549		48	1,900	65	15	12,465	29,225	41,690	7.5

	OUTE	DOOR LOOP	P (Air)	ELE	CTRIC	CAL			IND	OOR L	OOP (Ail)		
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (W)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Cond. Temp.	Airflow (L/s)	LAT (°C)	Delta T (°C)	Heating (W)	СОРн	
	-21°C	-26.9	2,965	15.3	300	3,456		32.8	900	27.5	6.4	6,421	1.86	
5	-15°C	-22.3	4,365	15.6	300	3,467		35.0	900	28.9	7.8	7,833	2.26	
Z	-9°C	-17.8	5,778	16.2	300	3,563		37.2	900	30.4	9.3	9,341	2.62	
	-4°C	-13.3	7,270	16.8	300	3,681	21°C	39.4	900	32.0	10.9	10,952	2.97	
	2°C	-8.6	8,848	17.5	300	3,812	210	41.7	900	33.7	12.6	12,660	3.32	
E	7°C	-3.9	10,752	18.3	300	3,953		43.9	900	35.8	14.7	14,705	3.72	
	13°C	0.9	12,666	19.1	300	4,122		46.1	900	37.9	16.8	16,788	4.07	
	18°C	5.3	14,599	20.0	300	4,300		48.3	900	40.0	18.9	18,899	4.40	
							1							
	OUTE	DOOR LOOP	P (Air)	ELE	CTRIC	AL				INDOC	R LOOP	? (Air @ 5	0% RH)	
	Outdoor Air	Condonaina	Heat Daipated	Compressor	Fan	Input		Even	Airflow		Dolto T	Latant	Consible	Co

 	OUTE	OOR LOOF	P (Air)	ELE	CTRIC	;AL				INDOC	DR LOO	P (Air @ 5	60% RH)		
	Outdoor Air Temperature	Condensing Temperature	Heat Rejected (W)	Compressor Current (A)		Input Power (W)	EAT	Evap. Temp.	Airflow (L/s)	LAT (°C)	Delta T (°C)	Latent (W)	Sensible (W)	Cooling (W)	COPc
	10°C	16.7	22,152	11.5	325	2,827		7.6	900	13.3	13.3	5,810	13,366	19,176	6.78
6	16°C	22.2	21,433	12.3	325	3,038		7.8	900	14.0	12.7	5,528	12,717	18,246	6.01
Ž	21°C	28.3	20,816	13.5	325	3,339		8.0	900	14.6	12.1	5,251	12,078	17,328	5.19
	27°C	33.9	20,199	14.9	325	3,640	27°C	8.2	900	15.3	11.4	4,972	11,438	16,410	4.51
8	32°C	40.0	19,650	16.8	325	4,050	210	8.4	900	15.9	10.8	4,622	10,835	15,457	3.82
Ö	38°C	45.6	19,060	18.8	325	4,469		8.7	900	16.6	10.1	4,320	10,128	14,447	3.23
	43°C	51.7	18,533	21.4	325	5,009		8.9	900	17.3	9.4	4,000	9,379	13,379	2.67
	49°C	57.2	17,908	24.1	325	5,549		9.1	900	18.1	8.5	3,652	8,563	12,215	2.20

Hydronic Performance

	OUTE	DOOR LOOI	P (Air)	ELECT	RICAL			INDO	OR LOO	P (Water)		
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (Btu/hr)	Compressor Current (A)	Input Power (W)	ELT	Condensing Temperature		LLT	Delta T	Heating (Btu/hr)	COP
	-5°F	-16°F	7,600	20.7	4730	102°F	110°F			3°F	23,400	1.45
	5°F	-8°F	13,600	19.3	4410	101°F	109°F			4°F	28,300	1.88
	15°F	1°F	19,200	17.8	4100	100°F	109°F			5°F	32,900	2.35
	25°F	9°F	24,800	17.1	3950	100°F	109°F	14	105°F	5°F	37,900	2.81
	35°F	17°F	31,700	15.5	3620	99°F	109°F	14	105 F	6°F	43,700	3.55
_	45°F	26°F	38,100	15.5	3610	98°F	108°F			7°F	50,100	4.07
		34°F	45,100	15.4	3570	97°F	108°F			8°F	56,900	4.68
	65°F	43°F	52,300	15.2	3490	96°F	108°F			9°F	63,900	5.37
	-5°F	-16°F	-	-	-	-	-	-			s limited to 105	
	5°F	-8°F	-	-	-	-	-	-			outdoor tempera	
	15°F	1°F	17,500	20.8	4830	115°F	124°F			5°F	32,800	2.05
	25°F	9°F	22,400	20.0	4650	115°F	124°F	14	120°F	5°F	37,600	2.39
	35°F	17°F	28,600	18.2	4270	114°F	123°F	14	120 F	6°F	42,800	2.94
	45°F	26°F	34,200	18.2	4270	113°F	123°F			7°F	48,500	3.33
	55°F	34°F	40,500	18.2	4250	112°F	123°F			8°F	54,700	3.77
	65°F	43°F	47,100	18.1	4190	111°F	123°F			9°F	61,000	4.27

ATF-65-HACW-P-1T R410a, 60 Hz, ZPS51K5E-PFV

	OUTE	DOOR LOOI	P (Air)	ELECT	RICAL			INDO	OR LOO	P (Water)		
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (W)	Compressor Current (A)	Input Power (W)	ELT	Condensing Temperature	Liquid Flow (L/s)	LLT	Delta T	Heating (W)	COPH
	-21°C	-27°C	2,230	20.7	4730	39°C	43°C			1.9°C	6,870	1.45
	-15°C	-22°C	3,980	19.3	4410	38°C	43°C			2.2°C	8,300	1.88
	-9°C	-18°C	5,630	17.8	4100	38°C	43°C			2.6°C	9,640	2.35
	-4°C	-13°C	7,250	17.1	3950	38°C	43°C	0.88	40.5°C	3.0°C	11,100	2.81
RIC)	2°C	-8°C	9,290	15.5	3620	37°C	43°C	0.00	-+0.5 C	3.5°C	12,800	3.55
	7°C	-4°C	11,200	15.5	3610	37°C	42°C			4.0°C	14,700	4.07
(ME	13°C	1°C	13,200	15.4	3570	36°C	42°C			4.5°C	16,700	4.68
	18°C	6°C	15,300	15.2	3490	36°C	42°C			5.1°C	18,700	5.37
	-21°C	-27°C	-	-	-	-	-			LLT is	limited to 40.5	°C at
	-15°C	-22°C	-	-	-	-	-			these c	outdoor tempera	atures
	-9°C	-18°C	5,140	20.8	4830	46°C	51°C			2.7°C	9,610	2.05
ï	-4°C	-13°C	6,560	20.0	4650	46°C	51°C	0.88	49°C	3.0°C	11,000	2.39
	2°C	-8°C	8,370	18.2	4270	46°C	51°C	0.00	45 0	3.4°C	12,500	2.94
	7°C	-4°C	10,000	18.2	4270	45°C	51°C			3.9°C	14,200	3.33
	13°C	1°C	11,900	18.2	4250	45°C	51°C			4.3°C	16,000	3.77
	18°C	6°C	13,800	18.1	4190	44°C	50°C			4.9°C	17,900	4.27

Air Heating/Cooling Performance

72,324

69,726

25.6

28.6

124

134

110°F

120°F

51,976

47,173

19,133

17,895

16,593

15,229

13,822

4.46

3.78

3.19

2.63

2.14

9.0

7.3

	OUTE	DOOR LOOI	P (Air)	ELE	CTRIC	AL			IND	OOR L	OOP (Ai	ir)			
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (Btu/hr)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Cond. Temp.	Airflow (cfm)	LAT (°F)	Delta T (°F)	Heating (Btu/hr)	СОРн		
	-5°F	-17	12,161	18.6	410	4,028		92	2,100	82	12	25,910	1.88		
ž	5°F	-8	17,560	19.4	410	4,159		96	2,100	85	15	31,754	2.24		
HEATING	15°F	0	23,143	20.2	410	4,293		100	2,100	88	18	37,797	2.58		
	25°F	8	29,197	21.1	410	4,387	70°F	104	2,100	91	21	44,171	2.95		
Ξ.	35°F	17	35,401	21.9	410	4,486	101	108	2,100	94	24	50,710	3.31		
	45°F	25	42,073	22.8	410	4,552		112	2,100	97	27	57,608	3.71		
	55°F	34	48,649	23.7	410	4,657		116	2,100	101	31	64,544	4.06		
	65°F	42	55,597	24.6	410	4,807		120	2,100	104	34	72,005	4.39		
	OUTE	DOOR LOOI	P (Air)	ELE	CTRIC	AL				INDOC	OR LOO	P (Air @ 5	0% RH)		
	Outdoor Air Temperature	Condensing Temperature		Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Evap. Temp.	Airflow (cfm)	LAT (°F)	Delta T (°F)	Latent (Btu/hr)	Sensible (Btu/hr)	Cooling (Btu/hr)	EER
	50°F	63	88,261	14.0	450	3,311		46	2,100	55	25	23,167	53,291	76,458	23.1
DNIT	60°F	73	85,697	15.5	450	3,593		46	2,100	56	24	22,098	50,834	72,932	20.3
	70°F	83	83,316	17.0	450	3,984		46	2,100	57	23	20,973	48,244	69,217	17.4
0	80°F	93	80,444	18.7	450	4,290	80°F	47	2,100	58	22	19,786	45,514	65,300	15.2
8	90°F	104	77,778	20.8	450	4,733	00 P	47	2,100	60	20	18,261	42,813	61,074	12.9
	100°F	114	74,910	23.0	450	5,194		47	2,100	61	19	16,933	39,699	56,632	10.9

47

47

2,100

2,100

63

64

17

16

15,541

14,105

36,435

<u>33,0</u>68

5,801

6,447

450

450

ATF-75-HACW-P-1T R410a, 60 Hz, ZPS60K5E-PFV

ETRIC	2														
	OUTE	DOOR LOOP	P (Air)	ELE	CTRIC	AL			IND	OOR L	OOP (Aii	7)			
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (W)	Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Cond. Temp.	Airflow (L/s)	LAT (°C)	Delta T (°C)	Heating (W)	СОРн		
()	-21°C -15°C	-27.1 -22.4	3,563 5,145	18.6 19.4	410 410	4,028 4,159		33.3 35.6	990 990	28.0 29.5	6.9 8.4	7,592 9,304	1.88		
Ň	-9°C	-17.8	6,781	20.2	410	4,293		37.8	990	31.1	10.0	11,074	2.58		
EAT	-4°C 2°C	-13.2 -8.6	8,555 10,372	21.1 21.9	410 410	4,387 4,486	21°C	40.0 42.2	990 990	32.8 34.5	11.7 13.4	12,942 14,858	2.95 3.31		
Ξ.	7°C 13°C	-3.8 0.9	12,327 14.254	22.8 23.7	410 410	4,552 4,657		44.4 46.7	990 990	36.4 38.2	15.2 17.1	16,879 18,911	3.71 4.06		
	13°C	5.8	16,290	24.6	410	4,807		48.9	990	40.2	19.0	21,097	4.39		
	OUTE	DOOR LOOP	P (Air)	ELE	CTRIC	AL				INDOC	OR LOOP	o (Air @ 5	0% RH)		
	Outdoor Air Temperature	Condensing Temperature		Compressor Current (A)	Fan (W)	Input Power (W)	EAT	Evap. Temp.	Airflow (L/s)	LAT (°C)	Delta T (°C)	Latent (W)	Sensible (W)	Cooling (W)	COP
	10°C	17.2	25,860	14.0	450	3,311		7.8	990	12.6	14.1	6.788	15,614	22,402	6.7
6	16°C	22.8	25,109	15.5	450	3,593		7.9	990	13.2	13.4	6,475	14,894	21,369	5.9
Z	21°C	28.3	24,411	17.0	450	3,984		8.0	990	13.9	12.8	6,145	14,135	20,280	5.0

27°C

8.1

8.2

8.3

8.4

8.6

990

990

990

990

990

14.6

15.3

16.2

17.0

17.9

12.0

11.3

10.5

9.6

8.7

5,797

5,350

4,961

4,553

4,133

13,336

12,544

11,632

10,675

9,689

COOLI

27°C

32°C

38°C

43°C

49°C

33.9

40.0

45.6

51.1

56.7

23,570

22,789

21,948

21,191

20,430

18.7

20.8

23.0

25.6

28.6

450

450

450

450

450

4,290

4,733

5,194

5,801

6,447

Hydronic Performance

AII	F-/5-HA	SVV-P-1	R410a, 6	60 Hz, ZPS6	60K5E-PFV	1						
	OUTE	DOOR LOOP	P (Air)	ELECT	RICAL			INDO	OR LOO	P (Water)		
	Outdoor Air Temperature	Evaporating Temperature	Heat Absorbed (Btu/hr)	Compressor Current (A)	Input Power (W)	ELT	Condensing Temperature	Liquid Flow (gpm)	LLT	Delta T	Heating (Btu/hr)	СОРн
	-5°F	-16°F	7,910	23.1	5140	102°F	110°F			3°F	25,100	1.43
	5°F	-8°F	14,900	21.5	4820	101°F	109°F			4°F	30,900	1.88
	15°F	1°F	21,600	20.9	4690	100°F	109°F			5°F	37,200	2.32
	25°F	9°F	29,100	19.6	4440	100°F	109°F	16	105°F	5°F	43,900	2.89
	35°F	17°F	36,500	18.8	4270	99°F	109°F	10	100 1	6°F	50,600	3.48
	45°F	26°F	43,900	18.1	4120	98°F	108°F			7°F	57,600	4.09
Ž	55°F	34°F	51,700	17.5	3980	97°F	108°F			8°F	64,900	4.77
Ē	65°F	43°F	60,100	16.9	3820	96°F	108°F			9°F	72,800	5.58
HEATING	-5°F	-16°F	-	-	-	-	-				limited to 105°	
I	5°F	-8°F	-	-	-	-	-				outdoor tempera	atures
	15°F	1°F	19,100	24.3	5540	115°F	124°F			5°F	37,100	1.99
	25°F	9°F	25,900	22.9	5250	115°F	124°F	16	120°F	5°F	43,400	2.42
	35°F	17°F	32,500	22.0	5050	114°F	123°F	10	1201	6°F	49,400	2.86
	45°F	26°F	39,300	21.2	4890	113°F	123°F			7°F	55,600	3.33
	55°F	34°F	46,400	20.6	4730	112°F	123°F			8°F	62,100	3.85
	65°F	43°F	54,100	19.8	4540	111°F	123°F			9°F	69,300	4.47
<i>IETRIC</i>												
		DOOR LOOP) (Air)	ELECT	RICAL			INDO	OR LOO	P (Water)		
	Outdoor Air Temperature	1	Heat Absorbed (W)	Compressor Current (A)	Input Power (W)	ELT	Condensing Temperature		LLT	Delta T	Heating (W)	COP _H
	-21°C	-27°C	2,320	23.1	5140	39°C	43°C			1.7°C	7,350	1.43
	-15°C	-22°C	4,360	21.5	4820	38°C	43°C			2.2°C	9,070	1.88
	-9°C	-18°C	6,320	20.9	4690	38°C	43°C			2.6°C	10,900	2.32
	-4°C	-13°C	8,520	19.6	4440	38°C	43°C	1.0	40.5°C	3.0°C	12,900	2.89
S	2°C	-8°C	10,700	18.8	4270	37°C	43°C	1.0	40.5 C	3.5°C	14,800	3.48
Ë	7°C	-4°C	12,900	18.1	4120	37°C	42°C			4.0°C	16,900	4.09
(METRIC)	13°C	1°C	15,100	17.5	3980	36°C	42°C			4.5°C	19,000	4.77
	18°C	6°C	17,600	16.9	3820	36°C	42°C			5.1°C	21,300	5.58
TING	-21°C -15°C	-27°C -22°C	-	-	-	-	-			-	limited to 40.5° outdoor tempera	

ATF-75-HACW-P-1T R410a, 60 Hz, ZPS60K5E-PFV

-9°C

-4°C

2°C

7°℃

13°C

18°C

-18°C

-13°C

-8°C

-4°C

1°C

6°C

5,590

7,580

9,530

11,500

13,600

15,900

24.3

22.9

22.0

21.2

20.6

19.8

5540

5250

5050

4890

4730

4540

46°C

46°C

45°C

45°C

45°C

44°C

51°C

51°C

51°C

51°C

51°C

50°C

2.6°C

3.0°C

3.4°C

3.9°C

4.3°C

4.8°C

49°C

1.0

10,900

12,700

14,500

16,300

18,200

20,300

1.99

2.42

2.86

3.33

3.85

4.47

Electrical Specifications

TABLE	TABLE 40 - ATF-Series Electrical Specifications • equipped with K6E compressors where available												
	Code	Power S	Supply		Compressor		Indoor Fan	Circu- lators	Outdoor Unit	FLA	MCA	Max. Breaker	Min. Wire
		V-ø-Hz	MIN	MAX	RLA	LRA	RLA	Max A	Max A	Amps	Amps	Amps	ga
	1	208/230-1-60	187	253	14.1	84	3.5	3.0	1.6	23.0	26.5	40	#8-2*
ATF-45	2	208-3-60	187	229	9.6	74	3.5	3.0	1.6	18.5	20.9	30	#10-3*
	4	460-3-60	414	506	5.1	37	3.5	3.0	1.6	14.0	15.3	20	#12-4
	1	208/230-1-60	187	253	20.4	122	4.0	4.0	1.6	30.8	35.9	50	#8-2*
ATF-55	2	208-3-60	187	229	14.0	83	4.0	4.0	1.6	24.4	27.9	40	#8-3*
	4	460-3-60	414	506	6.4	41	4.0	4.0	1.6	16.8	18.4	20	#12-4
	1	208/230-1-60	187	253	22.8	147	5.5	4.0	3.0	36.1	41.8	60	#6-2*
ATF-65	2	208-3-60	187	229	16.5	110	5.5	4.0	3.0	29.8	33.9	50	#8-3*
	4	460-3-60	414	506	7.2	52	5.5	4.0	3.0	20.5	22.3	30	#10-4
	1	208/230-1-60	187	253	27.6	190	6.5	4.0	3.0	41.9	48.8	60	#6-2*
ATF-75	2	208-3-60	187	229	18.6	149	6.5	4.0	3.0	32.9	37.6	50	#8-3*
	4	460-3-60	414	506	9.0	61	6.5	4.0	3.0	23.3	25.6	30	#10-4

* If connecting 115V indoor circulator, additional conductor required for NEUTRAL connection.

TABLE	TABLE 41 - Plenum Heater Electrical Specifications														
0:			(230-1-6	0)				(208-1-6	0)		(208-3-60)				
Size (kW)	Actual (kW)	FLA (A)	MCA (A)	Breaker (A)	Wire Size	Actual (kW)	FLA (A)	MCA (A)	Breaker (A)	Wire Size	Actual (kW)	FLA (A)	MCA (A)	Breaker (A)	Wire Size
5	5	20.8	26.0	30	#10	3.8	18.1	22.6	30	#10	5	13.9	17.4	30	#10
7	7	29.2	36.5	40	#8	5.3	25.3	31.6	40	#8	7	19.5	24.3	30	#10
10	10	41.7	52.1	60	#6	7.5	36.1	45.1	50	#6	10	27.8	34.7	40	#8
15	15	62.5	78.1	80	#4	11.3	54.2	67.7	80	#4	15	41.7	52.1	60	#6
20	20	83.3	104.2	100	#3	15.0	72.2	90.3	100	#3	-	-	-	-	-

Indoor Airflow Data

Model	Nominal		Range		Airflow Reduction - 20%		Airflow Reduction - 15%		Airflow R - 10		Airflow Reduction - 5%	
Size	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s
25	750	350	600-900	280-425	600	280	640	300	680	320	710	340
45	1150	540	900-1400	430-660	920	430	980	460	1040	490	1090	520
55	1500	710	1200-1800	570-850	1200	570	1280	600	1350	640	1430	670
65	1900	900	1500-2300	710-1090	1520	720	1620	760	1710	810	1810	850
75	2200	1040	1750-2500	830-1180	1760	830	1870	880	1980	940	2090	990

TABLE 43 - Indoor Airflow Range for STAGE 1 (Part Load)

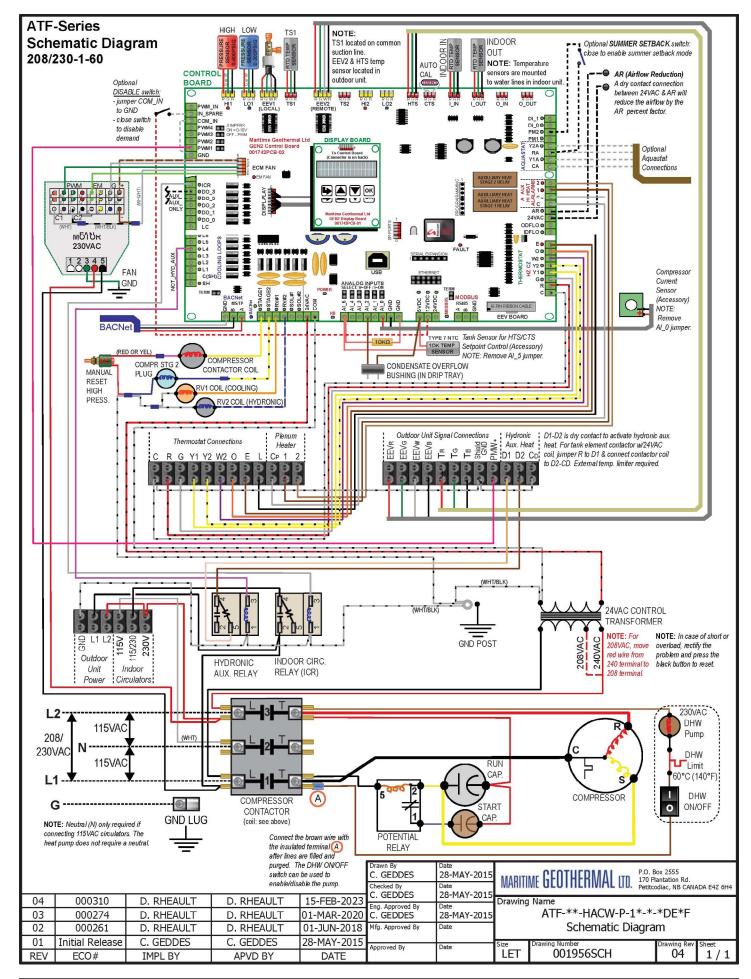
Model	Nominal		Range		Airflow Reduction - 20%		Airflow Reduction - 15%		Airflow Reduction - 10%		Airflow Reduction - 5%	
Size	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s
25	600	280	500-700	240-330	480	230	510	240	540	250	570	270
45	900	430	700-1100	330-520	720	340	770	360	810	380	860	400
55	1200	570	950-1450	450-680	960	450	1020	480	1080	510	1140	540
65	1500	710	1200-1800	570-850	1200	570	1280	600	1350	640	1430	670
75	1750	830	1400-2100	660-990	1400	660	1490	700	1580	740	1660	790

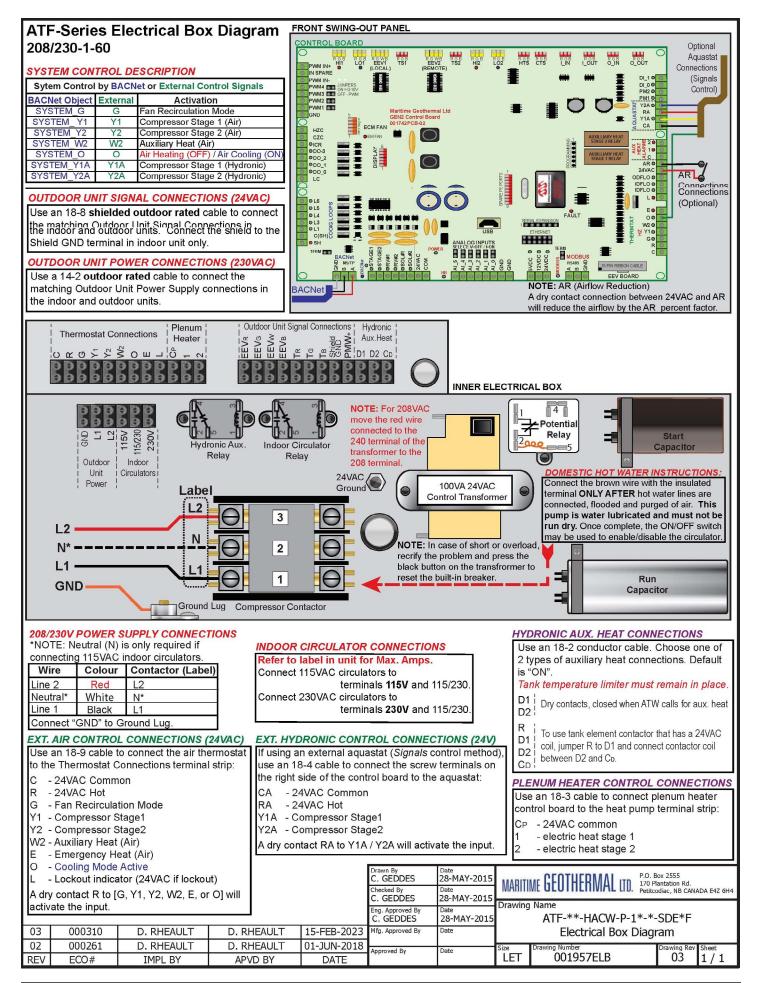
TABLE 44 - Indoor Airflow Range for STAGE 3 (Auxiliary)

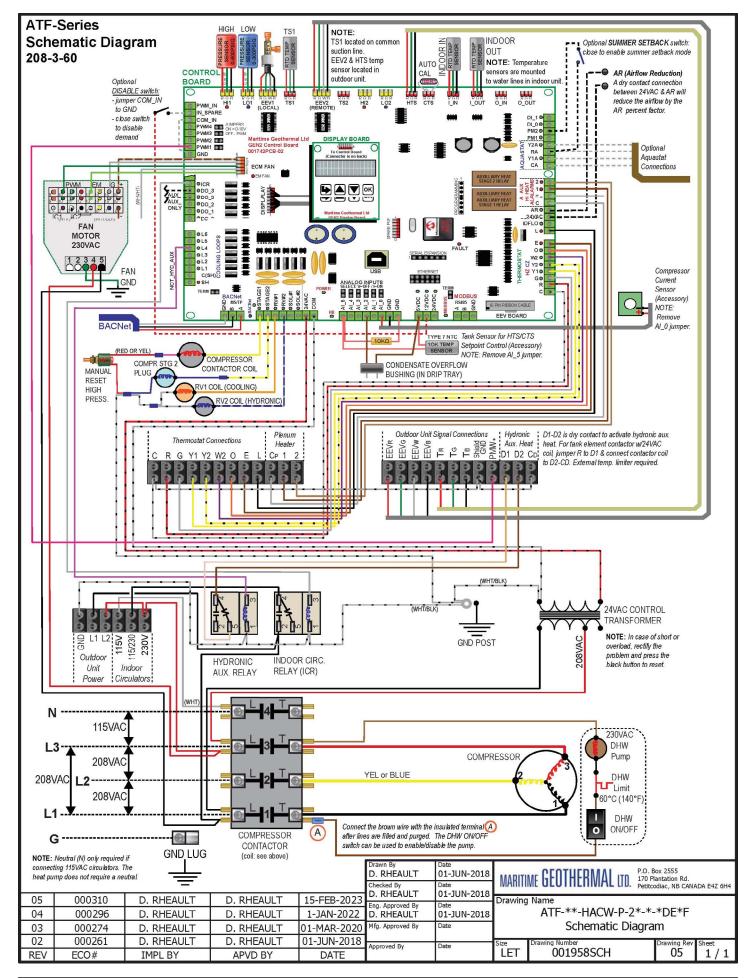
Model			Range Airflow Red - 20%			Airflow Reduction - 15%		Airflow Reduction - 10%		Airflow Reduction - 5%		
Size	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s
25	750	350	600-900	280-425	600	280	640	300	680	320	710	340
45	1150	540	900-1400	430-660	920	430	980	460	1040	490	1090	520
55	1500	710	1200-1800	570-850	1200	570	1280	600	1350	640	1430	670
65	1900	900	1700-2300	800-1090	1520	720	1620	760	1710	810	1810	850
75	2200	1040	2000-2500	940-1180	1760	830	1870	880	1980	940	2090	990

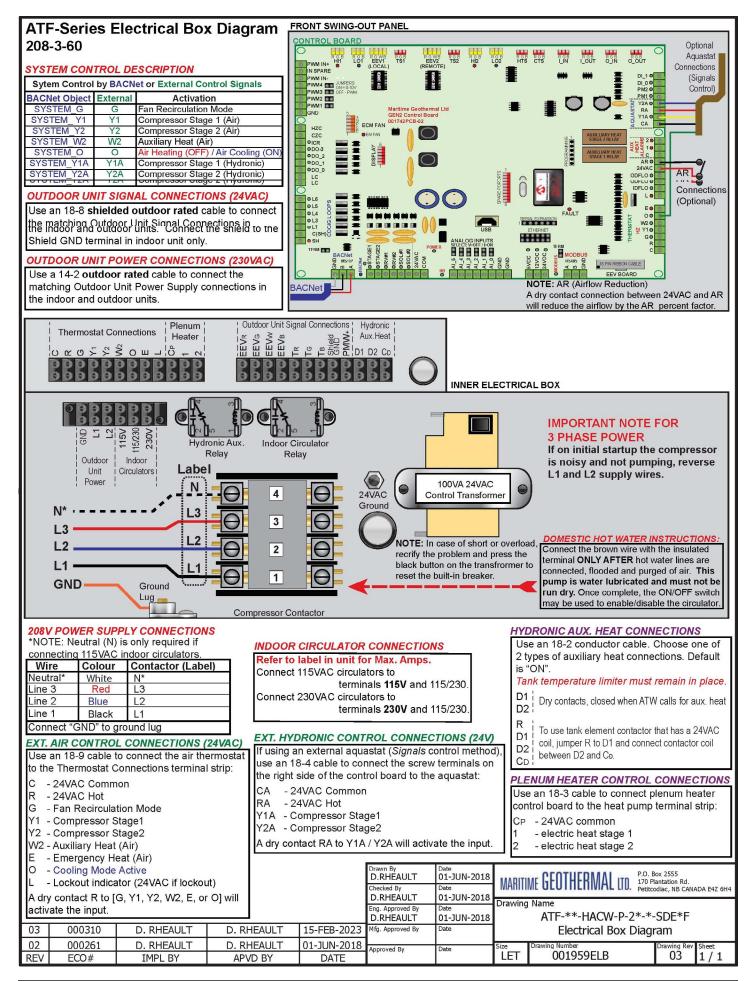
TABLE 45 - Indoor Airflow Range for Fan Recirculation

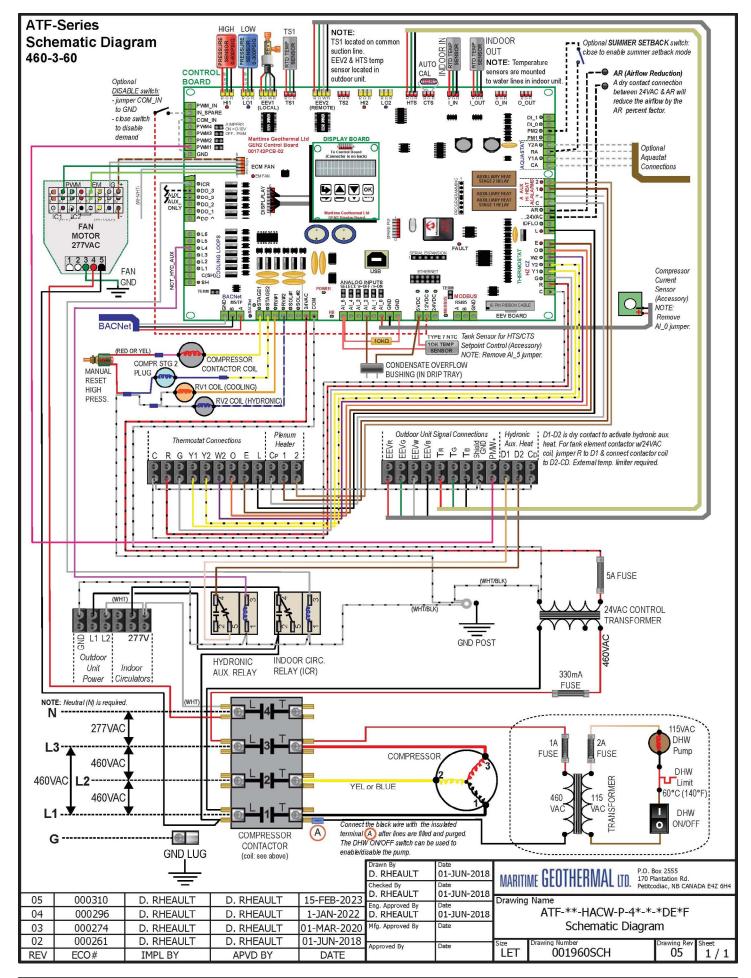
	5											
Model	Nominal		Range		Airflow Reduction - 20%		Airflow Reduction - 15%		Airflow Reduction - 10%		Airflow Reduction - 5%	
Size	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s
25	425	201	325-525	153-248	340	160	360	170	380	180	400	190
45	650	310	500-800	240-380	520	250	550	260	590	280	620	290
55	850	400	700-1000	330-470	680	320	720	340	770	360	810	380
65	1100	520	900-1300	430-610	880	420	940	440	990	470	1050	490
75	1250	590	1000-1500	470-710	1000	470	1060	500	1130	530	1190	560

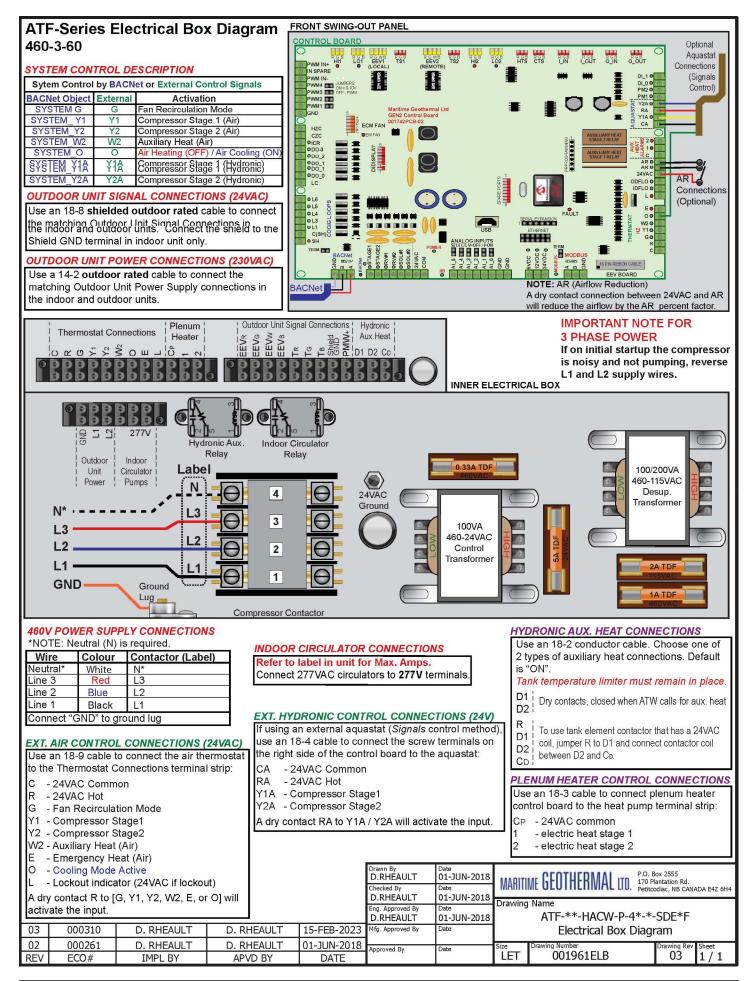

TABLE 46 - Indo Eme	oor Airflow R ergency Heat	
Model Size	cfm	L/s
25/45	1200	566
55/65/75	2000	940

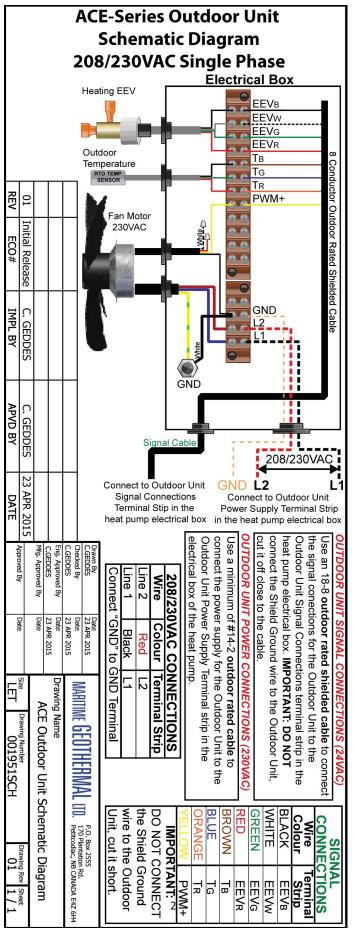

Maximum external static pressure: 0.50in H₂O

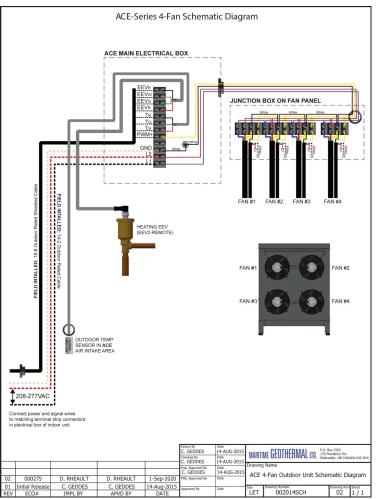

To obtain the AR airflow values, use a dry contact to connect AR to 24VAC on the right side of control board.

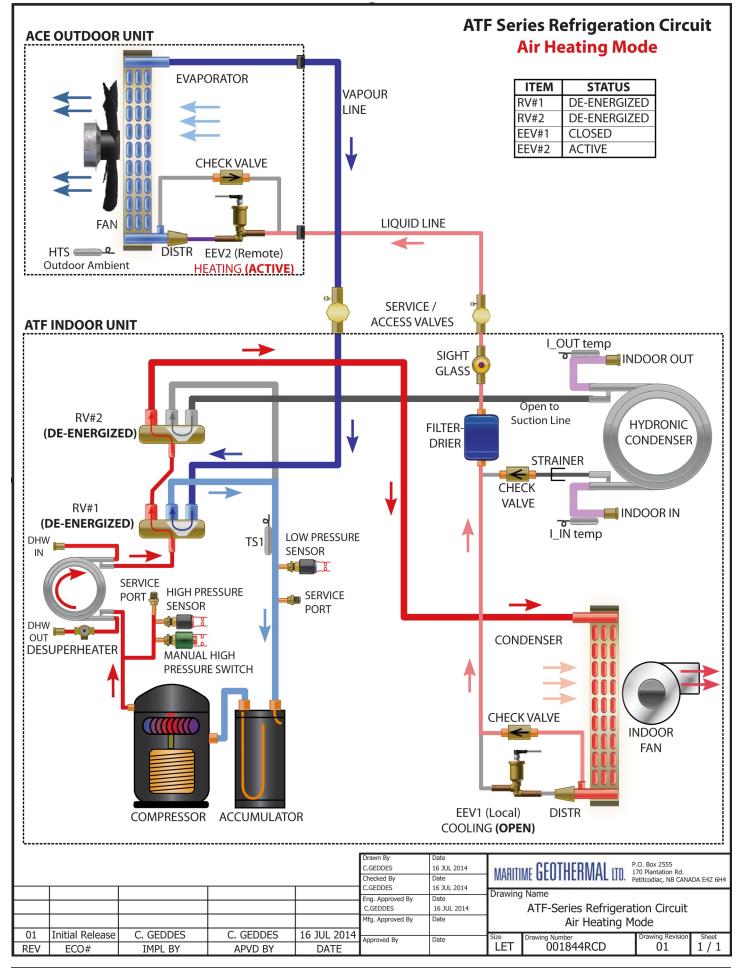

Airflow reduction % is set through PC App.

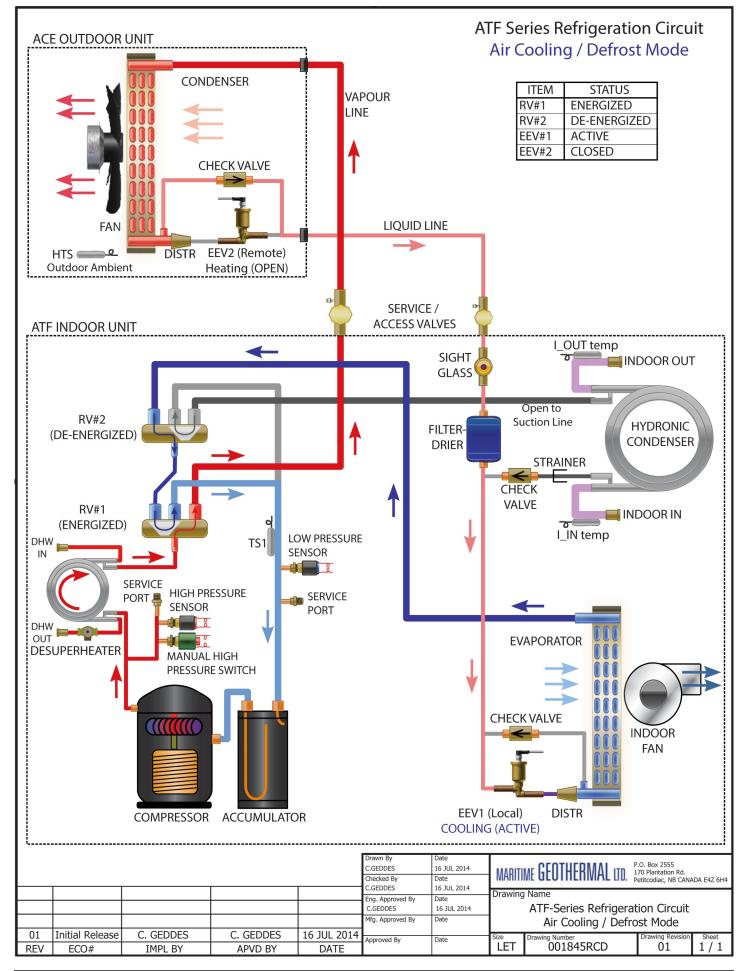

TABLE 47 - Indoor Airflow Reduction for Outdoor Temperature Outdoor Temperature Airflow Reduction Airflow > 45°F > 7°C 0% 100% 30 to 45°F -1 to 7°C -5% 95% 25 to 30°F -4 to -1°C -10% 90% 20 to 25°F -7 to -4°C -15% 85% -9 to -7°C 15 to 20°F -20% 80% 10 to 15°F -12 to -9°C -25% 75% 5 to 10°F -15 to -12°C -30% 70% 0 to 5°F -18 to -15°C -35% 65% < 0°F < -18°C -40% 60%

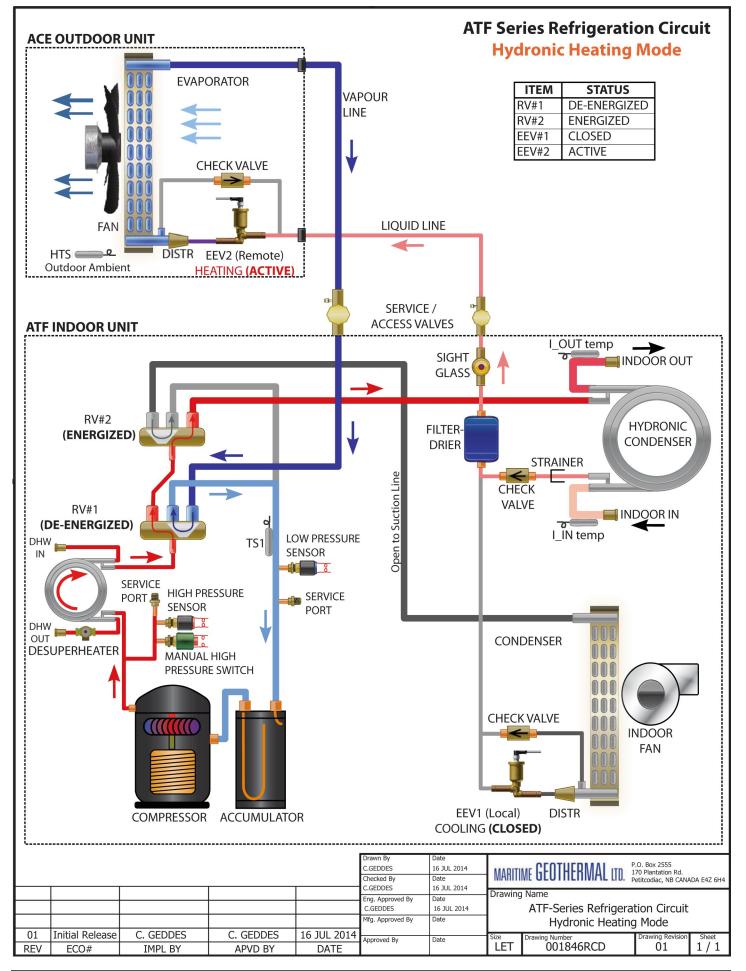




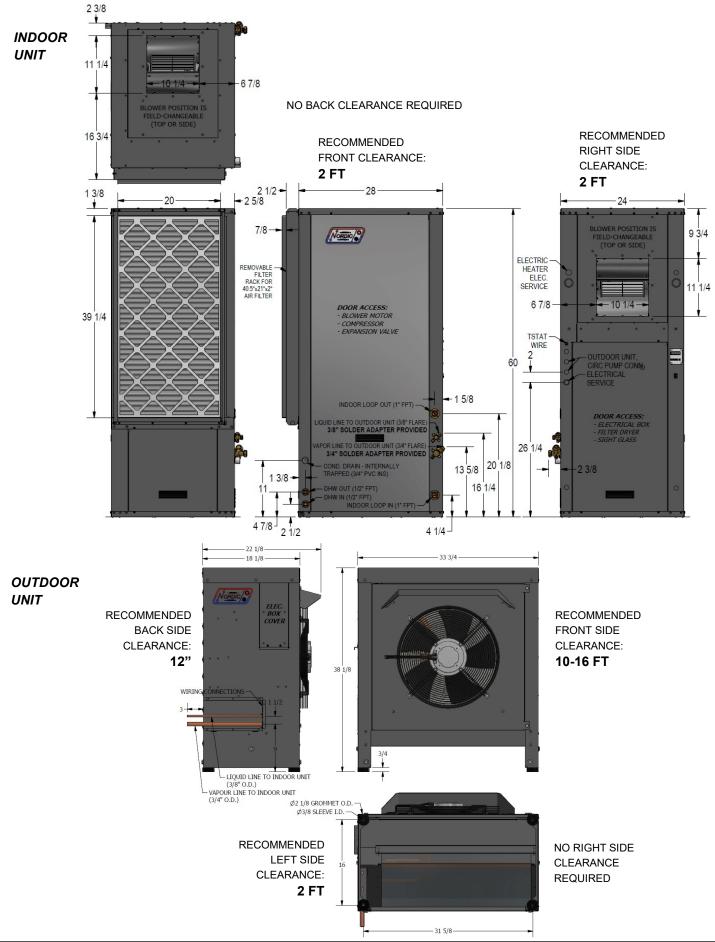


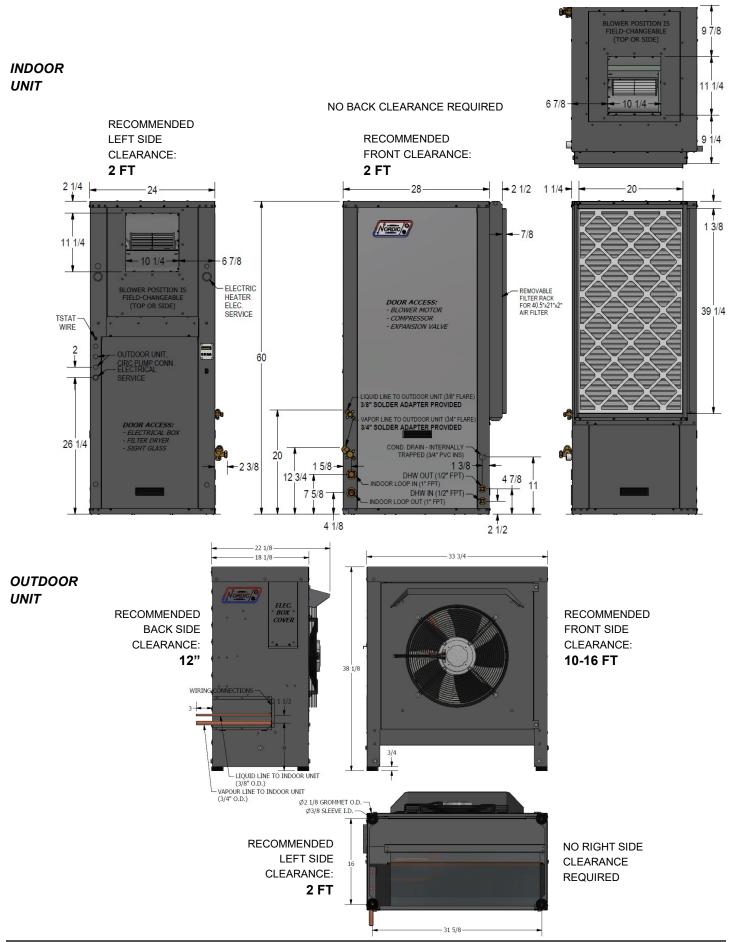




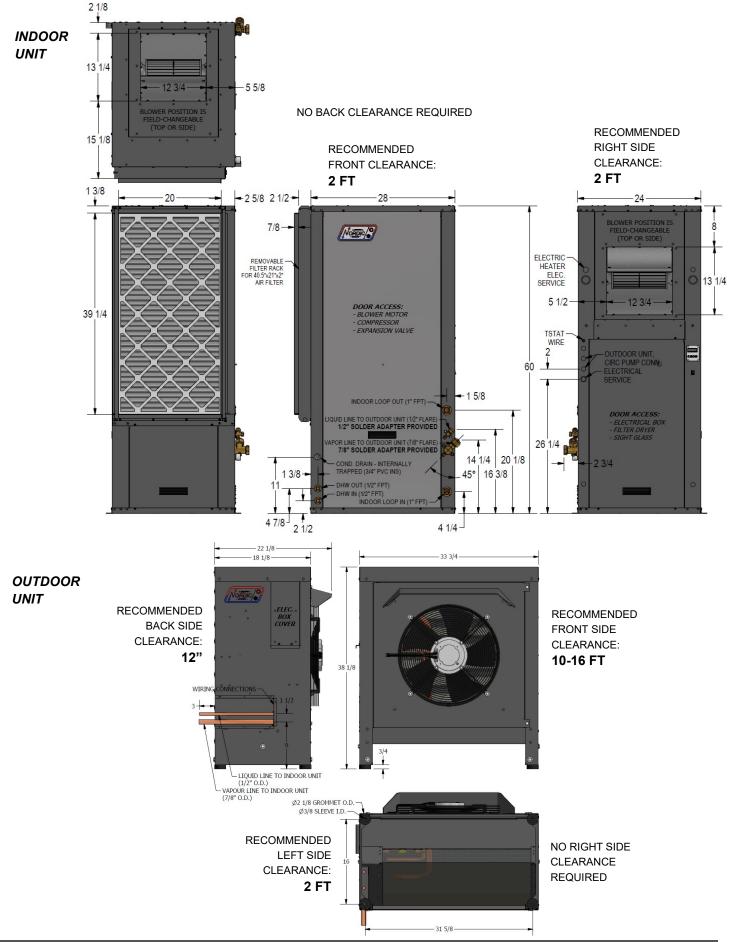


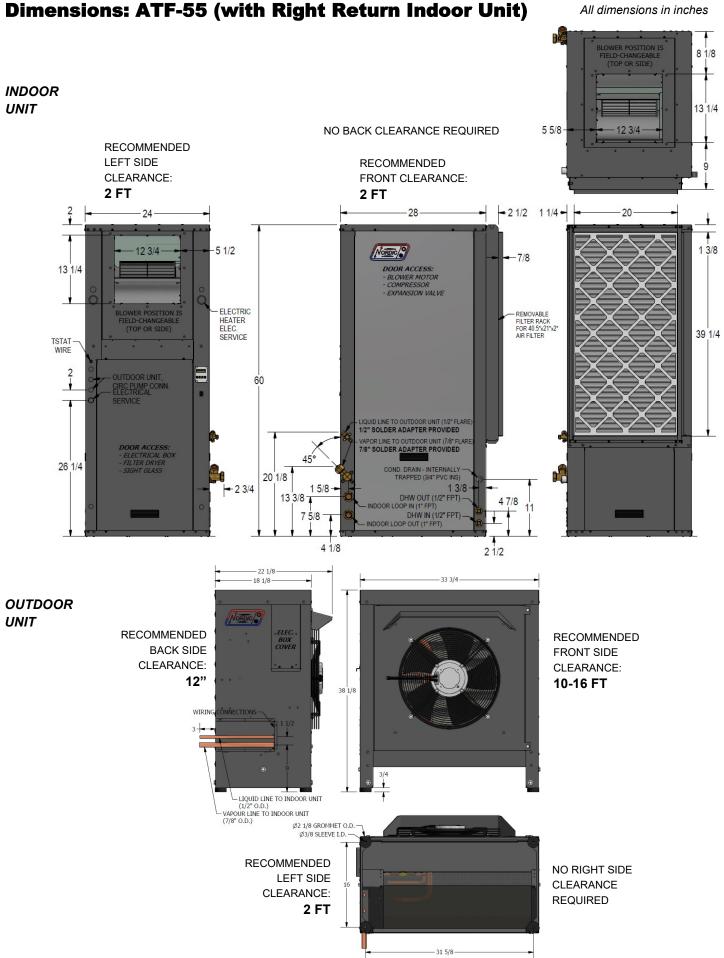
ACE-65/75 Wiring Diagram





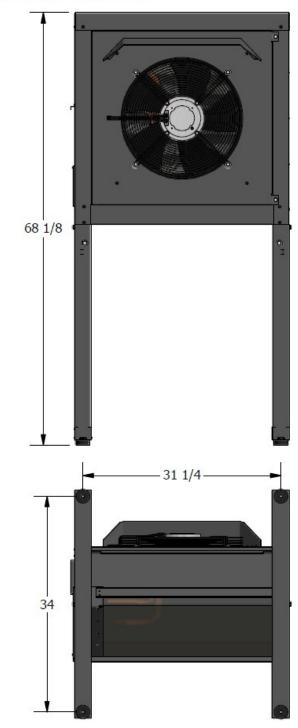
Dimensions: ATF-45 (with Left Return Indoor Unit)

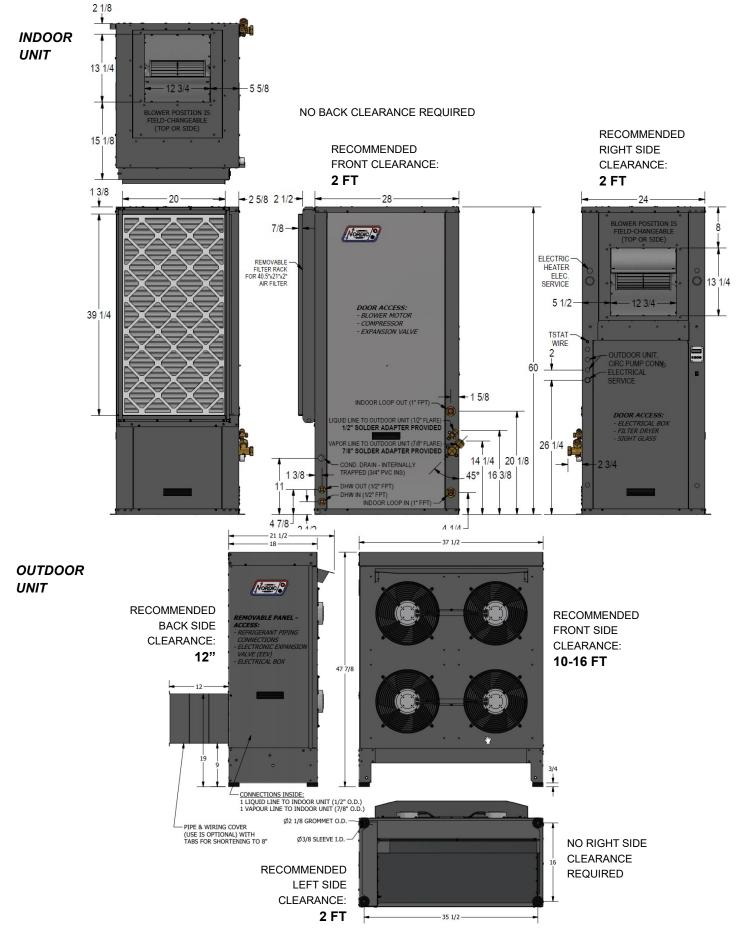


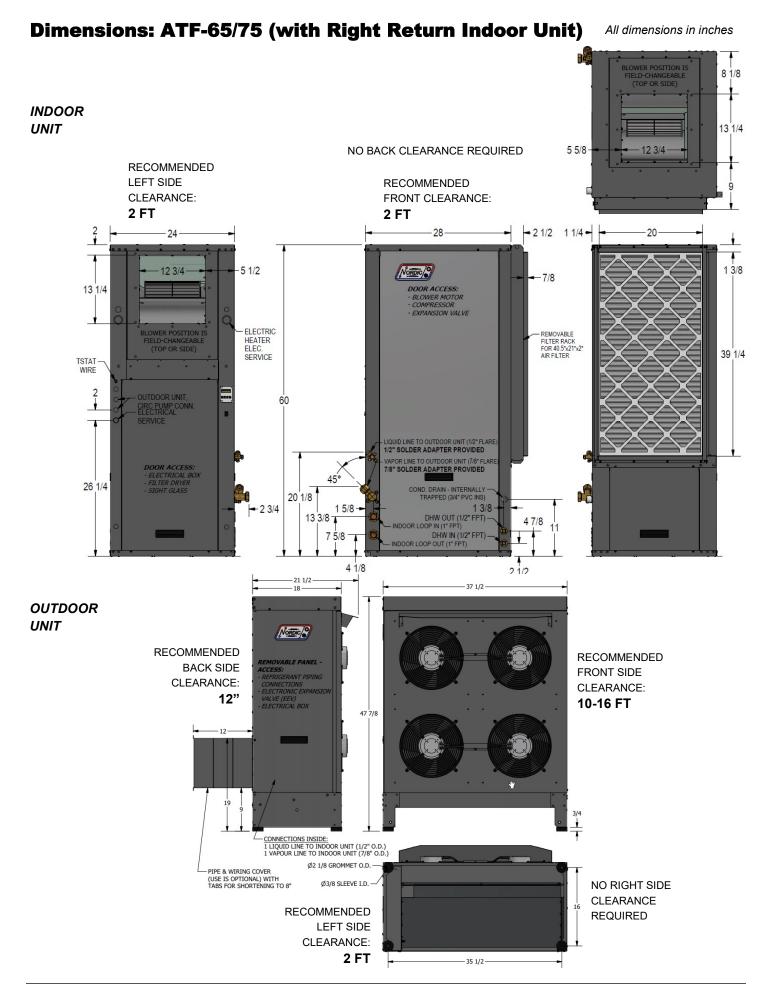

Dimensions: ATF-45 (with Right Return Indoor Unit)

All dimensions in inches

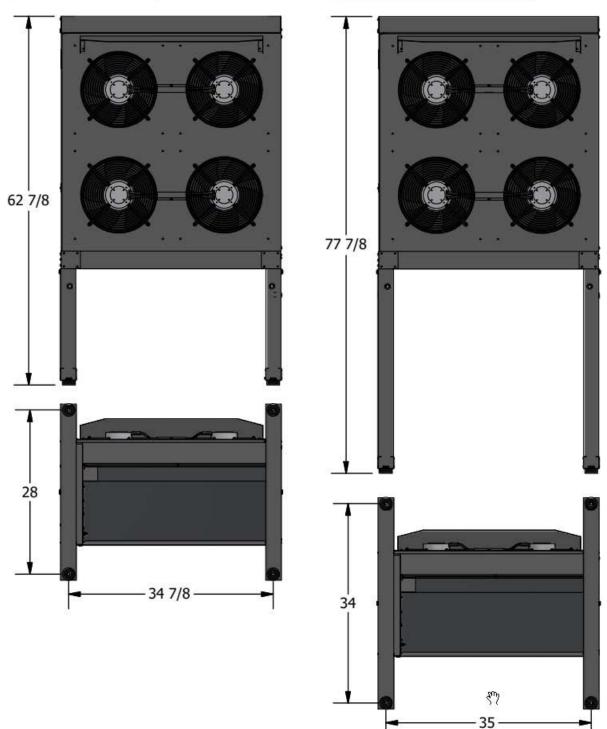
Dimensions: ATF-55 (with Left Return Indoor Unit)

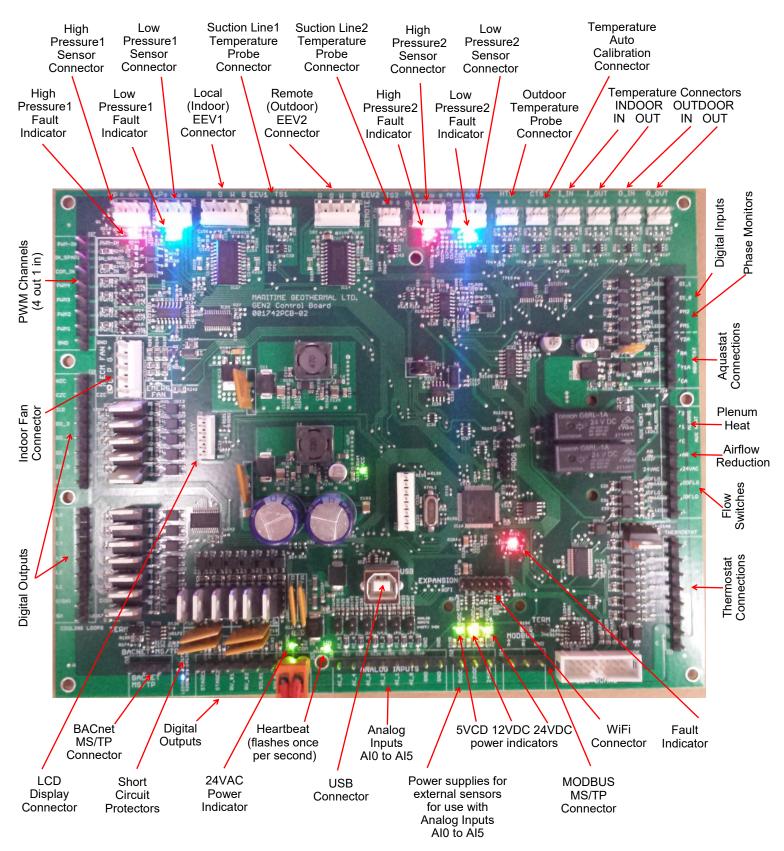



WITH LEG KIT


53 1/8 31 1/8 28

WITH TALL LEG KIT


Dimensions: ATF-65/75 (with Left Return Indoor Unit)


WITH LEG KIT

WITH TALL LEG KIT

Appendix A - GEN2 Control Board Description

The picture below shows the locations of the connectors and LED indicators of the control board. The control board offers many features such as short circuit protection on all digital outputs, Real Time Clock with super capacitor for backup power, WiFi capability, relay outputs for plenum heater control (if equipped), USB port, PIC32 microcontroller, etc.

The tables describe the connections starting with the top of the board and working around the board counter clock-wise.

TABLE A	1 - Control Board Connecte	or Descriptions (Top)
Name	Description	
HPS1/HI1	High Pressure Sensor 1	Mounted in Indoor Unit, measures discharge pressure.
LPS1/LO1	Low Pressure Sensor 1	Mounted in Indoor Unit, measures suction pressure.
EEV1	Local EEV	Mounted in Indoor Unit, used in cooling mode.
TS1	Suction Line Temperature 1	Mounted to suction line inside unit.
EEV2	Remote EEV	Mounted in Outdoor Unit, used in heating mode.
TS2	Suction Line Temperature 2	Unused.
HPS2/HI2	High Pressure Sensor 2	Unused.
LPS2/LO2	Low Pressure Sensor 2	Unused.
HTS	Outdoor Temperature	Mounted in Outdoor Unit.
CTS	Auto Calibration	Resistor in connector for auto-calibration reference (32°F—0°C).
I_IN	Indoor Loop IN	Mounted to pipe inside unit.
I_OUT	Indoor Loop OUT	Mounted to pipe inside unit.
O_IN	Outdoor Loop IN	Unused.
O_OUT	Outdoor Loop OUT	Unused.

TABLE A2	- Control Board Connee	ctor Descriptions (Left Side)
Name	Description	
PWM_IN	Signal for PWM IN	Unused.
IN_SPARE	Spare digital input	Switch or dry contact from 12VDC to disable unit (also COM_IN to GND).
COM_IN	Common for PWM IN	Jumper to GND for disable functionality.
PWM4	PWM / 0-10VDC output	Unused.
PWM3	PWM / 0-10VDC output	Unused.
PWM2	PWM / 0-10VDC output	Unused.
PWM1	PWM / 0-10VDC output	Outdoor Fan PWM control signal.
GND	Ground	Ground for PWM channels.
HZC	Hot Zone Circulator	Unused.
CZC	Cold Zone Circulator	Unused.
ICR	Internal Circulator Relay	Operates the Indoor Circulator.
DO 3	Auxiliary Only	Output when hydronic auxiliary to be run without compressor.
DO_2	Hydronic Auxiliary	Operates the hydronic auxiliary, pin 1A (Setpoint Control only).
 DO_1	Digital output	Unused.
DO_0	Digital output	Unused.
LC	Loop common (ground)	Unused.
L6	Loop6	Unused.
L5	Loop5	Unused.
L0 L4	NOT_HYD_AUX	Output OFF when auxiliary heat required; operates D1-D2 dry contacts.
L3	Loop3	Unused.
L2	Loop2	Unused.
L1	Loop1	ON when outdoor fan is operating.
C(SH)	Soaker Hose common	Ground for SH pin.
SH	Soaker Hose	Defrost indicator: ON when unit in defrost mode.

TABLE A3	TABLE A3 - Control Board Connector Descriptions (Bottom)								
Name	Description								
GND	BACnet MS/TP	Ground for shield if required.							
В	BACnet MS/TP	RS-485.							
А	BACnet MS/TP	RS-485.							
STAGE1	Compressor Stage 1	Starts / stops the compressor.							
STAGE2	Compressor Stage 2	Turns the compressor Stage 2 solenoid on/off.							
RV_#1	Reversing Valve#1	Off in heating modes, on in air cooling mode.							
RV_#2	Reversing Valve#2	Off in air heating or cooling modes, on in water heating mode.							
SOL#1	Solenoid#1	Unused.							
SOL#2	Solenoid#2	Unused.							
24VAC	Power supply for board	24VAC power for control board.							
СОМ	Power supply for board	GND for control board.							
AI_5	Analog In Channel 5	Optional type 3/7 10k hot tank temperature sensor for HTS/CTS Setpoint Control.							
AI_4	Analog In Channel 4	0 to 5VDC or 4-20mA user settable with board jumper.							
AI_3	Analog In Channel 3	0 to 5VDC or 4-20mA user settable with board jumper.							
AI_2	Analog In Channel 2	Condensate sensor.							
AI_1	Analog In Channel 1	0 to 5VDC or 4-20mA user settable with board jumper.							
AI_0	Analog In Channel 0	Optional compressor current sensor.							
GND	Ground pin	Ground for analog sensors.							
GND	Ground pin	Ground for analog sensors.							
5VDC	Power for analog sensors	Provides 5VDC power supply for sensors.							
12VDC	Power for analog sensors	Provides 12VDC power supply for sensors.							
24VDC	Power for analog sensors	Provides 24VDC power supply for sensors.							
A	MODBUS	RS-485.							
В	MODBUS	RS-485.							
GND	MODBUS	Ground for shield if required.							

Name	Description	
DI_1	Digital Input1	Unused.
DI_0	Digital Input0	Unused.
PM2	Phase Monitor2	Switch or dry contact from R to activate Summer Setback mode.
PM1	Phase Monitor1	Accessory for 3 phase models.
Y2A*	Aquastat Stage2	Optional water heat stage 2 24VAC input for use with Signals/Hardwired control.
RA*	Aquastat Power (24VAC)	Optional 24VAC output for aquastat used with Signals/Hardwired control.
Y1A*	Aquastat Stage1	Optional water heat stage 1 24VAC input for use with Signals/Hardwired control.
CA*	Aquastat Power (Ground)	Optional 24VAC ground for aquastat used with Signals/Hardwired control.
2	Plenum Heat Stage2	Dry contact output to activate air plenum heater stage 2.
1	Plenum Heat Stage1	Dry contact output to activate air plenum heater stage 1.
С	Plenum Heat Common	Common terminal for air plenum heater dry contacts.
AR	Airflow Reductions	Digital input to reduce airflow for zoning applications.
24VAC	Power	Power to external dry contact for AR terminal.
ODFLO	Outdoor Flow Switch	Unused.
IDFLO	Indoor Flow Switch	Unused.
L	Thermostat Lockout Indicator	24VAC to external trouble indicator.
E	Thermostat Emergency Heat	24VAC input from air thermostat.
0	Thermostat Heat/Cool	24VAC input from air thermostat.
W2	Thermostat Auxiliary Heat	24VAC input from air thermostat.
Y2	Thermostat Stage2	24VAC input from air thermostat.
Y1	Thermostat Stage1	24VAC input from air thermostat.
G	Thermostat Fan Recirculation	24VAC input from air thermostat.
R	Thermostat Power (24VAC)	24VAC to air thermostat.
С	Thermostat Power (Ground)	24VAC ground for air thermostat.

Appendix B - USB Driver Installation (Windows 10 & earlier)

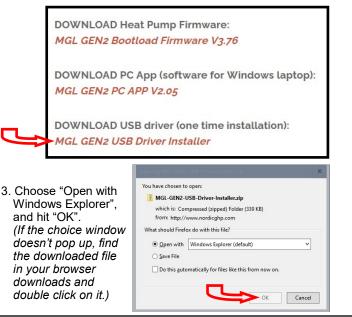
NOTE: This step is not necessary for Windows 11.

The first step in connecting a **Windows 10 or earlier** laptop computer to the control board is to install the USB driver.

The easiest way to install the USB driver is from the **USB drive included with the unit**. Insert the USB stick into a Windows computer, and open a File Explorer window to view its contents:

Double click on the SOFTWARE folder to show its contents:

_	files
	Step 1 [SKIP FOR WINDOWS 11] - USB driver
00	Step 2 - PC App (Press 'Install')
6	z. ONLY IF PROMPTED - NET framework (then do Step 2 again)


To install the USB driver, double click on **Step 1** and follow the prompts, clicking "allow" or "yes" as required.

If the USB drive is not available, the same files can be **down-loaded from the web page**.

1. Go to www.nordicghp.com, Download Software page:

2. Click on MGL GEN2 USB Driver Installer to download it:

4. In the window that is displayed, click and hold down the mouse button on the folder name, and drag to your desktop:

> MGL-GEN2-USD-Driver-Installer-2.zip	 v ひ Search MGL-GEN2-US8-Drive P 	
Туре	Compressed size Password Size	
EN2 USB Installer File folder	Terrarganitation of December 1. Actual	
L L		
		+ Copy to
	Туре	Type Compressed size Password Size

5. Double click on the folder you just dragged onto the desktop, then double click on the "USBDriverInstaller" file:

C:\Users\Dan\De	sktop\	MGL GEN2 USB Installer			_	• ×
File Home	Sha	re View				~ (
🖓 📙 🦻 🤁 📼						
← → * ↑	> 1	MGL GEN2 USB Installer	ٽ ~	Search M	GL GEN2 USB	Installer 🔎
	^	Name	Туре		Size	
📌 Quick access		DIFxAPI_x64.dll	Application	extension	508 K	P
E Desktop	*	DIFxAPI_x86.dll	Application		317 K	
🕹 Downloads	*	mchpcdc.cat	Security Cat		517 K	-
Documents	*	mchpcdc.inf	Setup Inform	-	4 K	
Pictures	*			ation		-
Pictures	×	W USBDriverInstaller.exe	Application		32 K	В
OneDrive			\sim			
	~		\sim			
5 items						8== 🖿

6. In the next window, click on "Install Drivers":

_ !	🕸 USB Driver Man	ngement Tool 64-Bit	-	x
	Install Drivers	Remove Drivers		
- 1				_
- 1				
- L				

7. You will see a message indicating the driver was installed successfully. You are now ready to install the PC App.

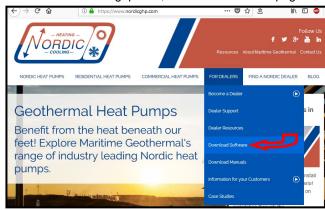
	🚳 USB Driver Mana	agement Tool 64-Bit	-		x
	Install Drivers	Remove Drivers			
_					
		s pre-installed to the driver s			
-		ew Hardware Wizard appea ndows to search automatica			
	the device, allow Wi	ndows to search automatica	ally for the dri	iver.	

Appendix C - PC App Installation (Windows 11)

The PC App allows detailed interfacing with the control board using a Windows laptop computer. These instructions are for *Windows 11*.

The easiest way to install the PC App is from the **USB drive included with the unit**. Insert the USB stick into a Windows computer, and open a File Explorer window to view its contents:

Double click on the SOFTWARE folder to show its contents:

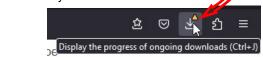


Double click on **Step 2** and follow the prompts, clicking "More info", "Run anyway", "Install", or similar on any warning windows which pop up, perhaps more than once. Pictures of warning windows you might encounter are shown below in step **8**.

If the USB stick drive is not available, the same file can be **downloaded from the web page**.

......

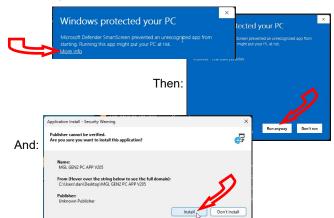
1. Go to www.nordicghp.com, Download Software page:


2. Click on MGL GEN2 PC APP V2__ to download it:

3. You may see a warning like this one. Click as shown:

 Click on the downloads icon on your browser, or otherwise view a list of your downloaded files:

5. Then click on the .zip file to open it in a File Explorer window:


6. In the window that is displayed, click and hold down the mouse button on the folder name, and drag to your desktop:

			ŵ •••	
< → × ↑ 📮	> De > M >	~ C		
A Home	Name		Туре	
> 📥 Dan - Personal	ingl gen2 PC 4	APP V205	File folder	
🛓 Downloads 🖈				
<mark>⊗</mark> IDocuments ≉ 1 item 1 item selected				+ Copy to Desktor

7. Double click on the folder you just dragged onto the desktop, then double click on the "setup" file:

8. Click "More info", "Run anyway", "Install", or similar on any warning windows which pop up, perhaps more than once.

9. The PC App will open when it is finished installing. (In the future, it should be started from the start menu.) You are now ready to connect a USB cord between the laptop computer and GEN2 control board, and connect.

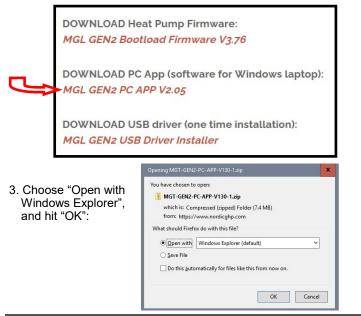
Appendix D - PC App Installation (Windows 10 & earlier)

The PC App allows detailed interfacing with the control board using a Windows laptop computer. These instructions are for *Windows 10 or earlier*. First, install the USB driver as per the previous appendix.

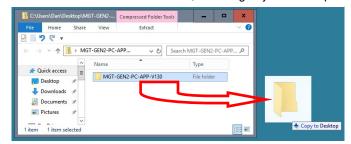
The easiest way to install the PC App is from the **USB drive included with the unit**. Insert the USB stick into a Windows computer, and open a File Explorer window to view its contents:

Double click on the SOFTWARE folder to show its contents:

	files
—	Step 1 [SKIP FOR WINDOWS 11] - USB driver
	Step 2 - PC App (Press 'Install')
	z. ONLY IF PROMPTED - NET framework (then do Step 2 again)


Double click on **Step 2** and follow the prompts, clicking "allow" or "yes" as required. If you get a warning that .NET framework is required, go back and double click on step **z**, then try **Step 2** again.

If the USB stick drive is not available, the same file can be **downloaded from the web page**.


1. Go to www.nordicghp.com, Download Software page:

2. Click on MGL GEN2 PC APP V2__ to download it:

 In the window that is displayed, click and hold down the mouse button on the folder name, and drag to your desktop:

5. Double click on the folder you just dragged onto the desktop, then double click on the "setup" file:

File Home	Share	View		~
- > ° ⊂ -		ST-GEN2-PC-APP-V130 روم		0.000
← → * T []	> MG		Search MGT-GEN2	-PC-APP)
	^	Name	Туре	Size
📌 Quick access		Application Files	File folder	
E Desktop	*	MGT GEN2 PC APP V130.application	Application Manif	2 K
Downloads	*	setup.exe	Application	511 K
Documents	s ≫	e setupiere	Application	JIIK
E Pictures	*			
ConeDrive				
Computer	~			

 Click "Yes", "Run", "Install", or similar on any warning windows which pop up. If an error message is encountered regarding .NET framework, exit the installation and use the link on the Download Software page to install the missing item:

Possible	e Additional Downloads:
required: VB Po	on of the PC Application, the following prerequisite files may be owerPack 10 and/or .netframework 4.0. If either of these is asked for ication installation, please download them from the links below.
VB PowerPa	ck 10 ork 4.0

Then go back to step 5.

7. The PC App will open when it is finished installing. You are now ready to connect a USB cord between the laptop computer and GEN2 control board, and connect.

METHOD 1: Updating Firmware Using PC App

This method can be used when updating newer control boards with bootloader version 2.0. This method will not work for older control boards with bootloader version 1.0 (approx. unit serial numbers -17 and lower); for those, see **METHOD 2**. Note that **METHOD 2** will work for all control boards.

The firmware comes as a .ZIP file named: **MGL GEN2 Bootload Firmware Vxxx.zip** where xxx is the version reference, e.g. 376 (version 3.76). This file can be downloaded from **www.nordicghp.com**, menu For Dealers --> Download Software.

 Download the file to your PC. When prompted, "Open" the zip file. If the zip file is *Saved* instead of *Opened*, find it in the web browser's Downloads list or at the bottom of browser window and click on it to open. In the window that comes up, drag the folder containing the required files onto your desktop so that it can be found easily, e.g.:

\Desktop\MGL GEN2 Bootload Firmware V376

Also be sure the latest PC App version (e.g. v2.05) is installed, which is listed alongside the firmware on the web page. If needed, install a new version as per those instructions, and uninstall older PC App versions to avoid their accidental use (which can corrupt control board parameters).

2. In that folder on the Desktop, there will be three files:

MGL_GEN2_V376.production.hex (firmware file) PIC32UBL.exe (the programmer) USB Bootloader Instructions.pdf (these instructions)

Note that on most computers, the file extensions (.exe, .pdf) will be hidden.

- 3. Connect a USB (printer) cable between computer and control board.
- 4. Launch the PC App version that matches the firmware (e.g. PC App 2.05 for firmware V3.76). After it is installed, the PC App can be started using the entry found under the "M" section in the Windows START menu, which is accessed using the 4-rectangles icon normally found at the bottom left corner of the computer screen.
- 5. In the PC App, click on the **Connect** button to connect to the control board.

				UNITS	STANDARD	MANUAL	
File	View	Graphs	Tools	Windows	Help	Connect	OFFLINE O
🖊 ма	G <mark>L GEN2</mark>	PC APP V2	2.05				S

6. Go to menu **Tools --> Update Firmware**. The following message box will appear:

7. Click on YES. The following message box will appear:

8. Click on **OK**. After a minute, the following message box will appear:

Firmware	Update	×
0	MGT GEN2 Control board is now ready for firmware upd	ate
	ОК	

- 9. Click on **OK**. The control board is now in bootloader mode and is ready to be programmed.
- 10. Double click on the downloaded file PIC32UBL.exe to run it. In the window that opens, click on the USB **Enable** check box.

ommunication Settings Serial Port		Bootloader Ver	Load Hex File	Erase
Com Port Baud Rate		Program	Verify	Run Application
		Erase-Prog	gram-Verify	Connect
VID PID				
0x4D8 0x03C	🔽 Enable			
Ethernet				
IP Address 192 . 168 . 1 . 11				
, UDP Port				
6234	Enable			

. Click on Connect.	Bootloader Ver	Load Hex File	Erase
	Program	Verify	Run Application
Connect	Erase-Prog	gram-Verify	Disconnect
	Device connected Bootloader Firmwa		^

If device fails to connect and an error message is displayed, the board's bootloader may be older than v2.0. It will be necessary to instead update the firmware via jumper pins (**METHOD 2**), as per the next section.

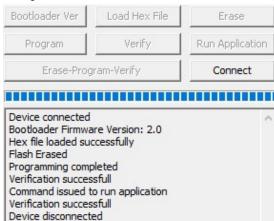
11

12. Click on Load Hex File. Select the

MGL_GEN2_V376.production.hex (or higher version number) file, which is in the folder you created on the Desktop.

		Erase	
Program	Verify	RU1 Application	
Erase-Program	Erase-Program-Verify		

 Click on Erase—Program—Verify. Programming.... Wait while status bar shows progress. The messages should read as below when finished:


Bootloader Ver	Load Hex File	Erase		
Program	Verify	Run Application		
Erase-Prog	Erase-Program-Verify			
Device connected	1	^		

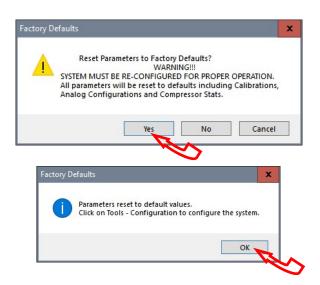
Device connected	
Bootloader Firmware Version: 2.0	
Hex file loaded successfully	
Flash Erased	
Programming completed	
Verification successful	

11. "Programming completed. Verification successful." Click on **Run Application.** This will take the control board out of bootloader mode and back into normal operational mode, so that the PC App can connect again.

15. Wait until the programmer disconnects itself. The messages should read as follows:

- 16. Close the PIC32 program.
- 17. WAIT APPROXIMATELY 10 SECONDS. This gives the control board time to reset, initialize and re-connect to the PC USB port.
- Go back to the PC APP and click on the **Connect** button. Verify that the firmware version, shown in the title bar after connection, has been updated. Perform any configuration needed.

File	View	Graphs	Tools	Windows	Help	Connect	OFFLINE
------	------	--------	-------	---------	------	---------	---------


NOTE: Updating the firmware does not affect the configuration settings.

Reset to Defaults?

When updating from **firmware V3.75 or earlier**, the following steps must be taken after the update as there are significant differences in the internal parameters used to operate the system. These steps may also be performed for troubleshooting, when the control system is not acting as it should.

Note that if the firmware on a heat pumps is 2.45 or earlier, chances are that it will have an older bootloader version that requires the use of **METHOD 2** to update the firmware (see following page).

- 1. With PC App connected, go to menu **Tools --> Configura**tion and note all settings. They will need to be re-set later.
- 2. Go to menu **Tools --> Reset To Factory Defaults.** Click **YES** in the pop up window, and OK in the next window.

- 3. Go back to menu **Tools --> Configuration**. Re-select the Model Series <u>even if it already indicates the proper series</u>, as clicking on it will load the parameters for that series.
- 4. Select the Model Size and make any other changes that apply to the particular system setup such as number of stages, control method, etc.

METHOD 2: Updating Firmware Using Jumper Pins

This method should be used when updating older control boards that have bootloader version 1.0, or where the PC App has trouble connecting to older firmware. This method will work for all control boards and can be used on all units.

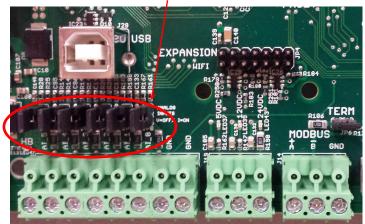
The firmware comes as a .ZIP file named:

MGL GEN2 Bootload Firmware Vxxx.zip

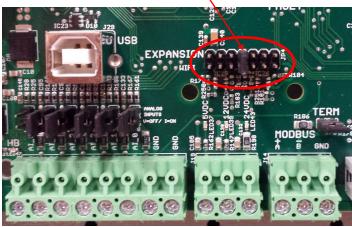
where xxx is the version reference, e.g. 376 (version 3.76). This file can be downloaded from **www.nordicghp.com**, menu *For Dealers --> Download Software.*

1. Download the file to your PC. When prompted, "Open" the zip file. If the zip file is *Saved* instead of *Opened*, find it in the web browser's Downloads list or at the bottom of browser window and click on it to open. In the window that comes up, drag the folder containing the required files onto your desktop so that it can be found easily, e.g.:

\Desktop\MGL GEN2 Bootload Firmware V376


2. In that folder on the Desktop, there will be three files:

MGL_GEN2_V376.production.hex (firmware file) PIC32UBL.exe (the programmer) USB Bootloader Instructions.pdf (these instructions)


Note that on most computers, the file extensions (.exe, .pdf) will be hidden.

- 3. Connect a USB (printer) cable between computer and control board.
- 4. Turn power off to the heat pump.
- 5. Remove one of the black pin jumpers from just below the USB connector on the board and place in on the center pin pair of the EXPANSION header as shown below.

Borrow any one of these jumpers (however many are present)

Place jumper here

- 6. Turn the power back on. The control board is now in boot loader mode and is ready to be programmed.
- 7. Double click on the downloaded PIC32UBL.exe to run it. In the window that opens, click on the USB **Enable** check box.

PIC32 Bootloader Application V1.2			
Communication Settings	Bootloa	der Ver Load Hex F	le Erase
Com Port Baud Rate	Prog	ram Verify	Run Applicatio
COM1 - 115200 -	Enable	irase-Program-Verify	Connect
VID PID 0x4D8 0x03C	Enable	a abernogram venny	
Ethernet IP Address 192 . 168 . 1 . 11 UDP Port 6234	Enable		
8. Click on Connect.	Bootloader Ver	Load Hex File	Erase
	Program	Verify	Run Application
Run Application	Erase-Pror	gram-Verify	Disconnect
Connect		,,	
	Device connected Bootloader Firmwa		/
. Click on Load Hex File. Select the <i>MGL_GEN2_V376.</i>	Bootloader Ver	Load Hex File	Erase
	Program	Verify	Ros Application
production.hex (or	Erase-Proc	gram-Verify	Disconnect
higher version num-			
the folder you creat- ed on the Desktop.	Bootloader Firmw Hex file loaded su	ccessfully	
0. Click on Erase—	Bootloader Ver	Load Hex File	Erase
Program—Verify	Program	Verify	Run Application
Programming	Erase-Prog	gram-Verify	Disconnect
	Device connected Bootloader Firmw Hex file loaded su Flash Erased	are Version: 1.0	
1. "Programming	Bootloader Ver	Load Hex File	Erase
completed. Verifi- cation successful."	Program	Verify	Run Application
Click on	Frase-Pro	gram-Verify	Disconnect
Disconnect and			
close the program.	Device connected Bootloader Firmw	are Version: 1.0	
 Turn power off to the heat pump again. 	Hex file loaded su Flash Erased Programming com Verification succe	pleted	
 Move the jumper back to where it 			

 Turn the power back on. Check that the LCD Display shows e.g. MGL GEN2 V3.76 on the top line during power up.

ECO 000310: 15-Feb-2023

was taken from.

LIMITED RESIDENTIAL WARRANTY

MARITIME GEOTHERMAL LTD. warrants that the heat pumps manufactured by it shall be free from defects in materials and workmanship for a period of (5) FIVE YEARS after the date of installation or for a period of (5) FIVE YEARS AND (60) SIXTY DAYS after the date of shipment, whichever occurs first. In addition MARITIME GEOTHERMAL LTD. warrants that the compressor shall be free of defects in materials and workmanship for an additional period of (2) TWO YEARS from said date.

MARITIME GEOTHERMAL LTD. shall, at its option repair or replace any part or parts covered by this warranty which shall be returned to MARITIME GEOTHERMAL LTD., transportation charges prepaid, which, upon examination proves to be defective in materials or workmanship. Replacement or repaired parts and components are warranted only for the remaining portion of the original warranty period.

This warranty is subject to the following conditions:

1. The NORDIC® heat pump must be properly installed and maintained in accordance with MARITIME GEOTHERMAL LTD.'s installation and maintenance instructions.

2. The installer must complete the "**Installation Data Sheet**", have it endorsed by the owner and return it to Maritime Geothermal Ltd. within 21 days of installation of the unit.

3. It is the responsibility of the building or general contractor to supply temporary heat to the structure prior to occupancy. These heat pumps are designed to provide heat only to the completely finished and insulated structure. Start-up of the unit shall not be scheduled prior to completion of construction and final duct installation for validation of this warranty.

4. It is the customer's responsibility to supply the proper quantity and quality of water.

If the heat pump, manufactured by MARITIME GEOTHERMAL LTD., fails to conform to this warranty, MARITIME GEOTHERMAL LTD.'s sole and exclusive liability shall be, at its option, to repair or replace any part or component which is returned by the customer during the applicable warranty period set forth above, provided that (1) MARITIME GEOTHERMAL LTD. is promptly notified in writing upon discovery by the customer that such part or component fails to conform to this warranty. (2) The customer returns such part or component to MARITIME GEOTHERMAL LTD., transportation charges prepaid, within (30) thirty days of failure, and (3) MARITIME GEOTHERMAL LTD.'s examination of such component shall disclose to its satisfaction that such part or component fails to meet this warranty and the alleged defects were not caused by accident, misuse, neglect, alteration, improper installation, repair or improper testing.